Advertisement

Counting Plane Graphs with Exponential Speed-Up

  • Andreas Razen
  • Emo Welzl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6570)

Abstract

We show that one can count the number of crossing-free geometric graphs on a given planar point set exponentially faster than enumerating them. More precisely, given a set P of n points in general position in the plane, we can compute pg(P), the number of crossing-free graphs on P, in time at most \(\frac{{\rm poly}(n)}{\sqrt{8}^n} \cdot{\sf pg}(P)\). No similar statements are known for other graph classes like triangulations, spanning trees or perfect matchings.

The exponential speed-up is obtained by enumerating the set of all triangulations and then counting subgraphs in the triangulations without repetition. For a set P of n points with triangular convex hull we further improve the base \(\sqrt{8}\approx 2.8284\) of the exponential to 3.347. As a main ingredient for that we show that there is a constant α > 0 such that a triangulation on P, drawn uniformly at random from all triangulations on P, contains, in expectation, at least n/α non-flippable edges. The best value for α we obtain is 37/18.

Keywords

Counting crossing-free configurations plane graphs triangulations constrained Delaunay triangulation edge flips 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the Number of Plane Geometric Graphs. Graphs and Combinatorics 23, 67–84 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-Free Subgraphs. Annals Discrete Math. 12, 9–12 (1982)MathSciNetMATHGoogle Scholar
  3. 3.
    Avis, D., Fukuda, K.: Reverse Search for Enumeration. Discrete Appl. Math. 65, 21–46 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bespamyatnikh, S.: An Efficient Algorithm for Enumeration of Triangulations. Comput. Geom. Theory Appl. 23, 271–279 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Flajolet, P., Noy, M.: Analytic Combinatorics of Non-Crossing Configurations. Discrete Math. 204, 203–229 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Katoh, N., Tanigawa, S.: Fast Enumeration Algorithms for Non-Crossing Geometric Graphs. In: Proc. 24th Ann. Symp. on Comput. Geom., pp. 328–337 (2008)Google Scholar
  7. 7.
    Lee, D.T., Lin, A.K.: Generalized Delaunay triangulation for planar graphs. Discrete Comput. Geom. 1, 210–217 (1986)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Santos, F., Seidel, R.: A Better Upper Bound on the Number of Triangulations of a Planar Point Set. J. Comb. Theory, Ser. A 102, 186–193 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sharir, M., Sheffer, A.: Counting Triangulations of Planar Point Sets (2010), http://arxiv.org/abs/0911.3352
  10. 10.
    Sharir, M., Welzl, E.: On the Number of Crossing-Free Matchings, Cycles, and Partitions. SIAM J. Comput. 36, 695–720 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sharir, M., Welzl, E.: Random Triangulations of Planar Point Sets. In: Proc. 22nd Ann. ACM Symp. on Comput. Geom., pp. 273–281 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andreas Razen
    • 1
  • Emo Welzl
    • 1
  1. 1.Institute of Theoretical Computer ScienceETH ZurichSwitzerland

Personalised recommendations