Covering and Packing with Spheres by Diagonal Distortion in ℝn

  • Herbert Edelsbrunner
  • Michael Kerber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6570)


We address the problem of covering ℝ n with congruent balls, while minimizing the number of balls that contain an average point. Considering the 1-parameter family of lattices defined by stretching or compressing the integer grid in diagonal direction, we give a closed formula for the covering density that depends on the distortion parameter. We observe that our family contains the thinnest lattice coverings in dimensions 2 to 5. We also consider the problem of packing congruent balls in ℝ n , for which we give a closed formula for the packing density as well. Again we observe that our family contains optimal configurations, this time densest packings in dimensions 2 and 3.


Packing covering spheres balls cubes lattices n-dimensional Euclidean space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bambah, R.P.: On lattice coverings by spheres. Proc. Natl. Inst. Sci. India 20, 25–52 (1954)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Blichfeldt, H.F.: The minimum values of quadratic forms in six, seven, and eight variables. Math. Zeit. 39, 1–15 (1935)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cohn, H., Kumar, A.: The densest lattice in twenty-four dimensions. Electronic Research Announcements of the Amer. Math. Soc. 10, 58–67Google Scholar
  4. 4.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  5. 5.
    Delone, B.N., Ryskov, S.S.: Solution of the problem of least dense lattice covering of a four-dimensional space by equal spheres. Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya 4, 1333–1334 (1963)Google Scholar
  6. 6.
    Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge Univ. Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Edelsbrunner, H., Kerber, M.: Dual complexes of cubical subdivisions of ℝn. IST Austria, Klosterneuburg, Austria (2010) (manuscript)Google Scholar
  8. 8.
    Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum. Grundlehren der mathematischen Wissenschaften, vol. 65. Springer, Berlin (1953)CrossRefzbMATHGoogle Scholar
  9. 9.
    Freudenthal, H.: Simplizialzerlegung von beschränkter Flachheit. Ann. of Math. 43, 580–582 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gauss, C.F.: Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber. Göttingische Gelehrte Anzeigen (1831); reprinted in Werke II, Königliche Gesellschaft der Wissenschaften, pp. 188–196 (1863)Google Scholar
  11. 11.
    Hales, T.: A proof of the Kepler conjecture. Ann. Math., Second Series 162, 1065–1185 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kershner, R.: The number of circles covering a set. Amer. J. Math. 61, 665–671 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Korkine, A., Zolotareff, G.: Sur les formes quadratiques positives. Math. Ann. 11, 242–292 (1877)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kuhn, H.W.: Some combinatorial lemmas in topology. IBM J. Res. Develop. 45, 518–524 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Leech, J.: Notes on sphere packings. Canad. J. Math. 19, 251–267 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rogers, C.A.: Packing and Covering. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 54. Cambridge Univ. Press, Cambridge (1964)zbMATHGoogle Scholar
  17. 17.
    Ryskov, S.S., Baranovskii, E.P.: Solution of the problem of least dense lattice covering of a five-dimensional space by equal spheres. Doklady Akademii Nauk SSSR 222, 39–42 (1975)MathSciNetGoogle Scholar
  18. 18.
    Schürmann, A., Vallentin, F.: Local covering optimality of lattices: Leech lattice versus root lattice E8. Int. Math. Res. Notices 32, 1937–1955 (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Schürmann, A., Vallentin, F.: Computational approaches to lattice packing and covering problems. Discrete Comput. Geom. 35, 73–116 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Szpiro, G.G.: Kepler’s Conjecture: How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World. Wiley, Hoboken (2003)zbMATHGoogle Scholar
  21. 21.
    Thue, A.: Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene. Norske Vid. Selsk. Skr. 1, 1–9 (1910)zbMATHGoogle Scholar
  22. 22.
    Witt, E.: Collected Papers. Gesammelte Abhandlungen. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Herbert Edelsbrunner
    • 1
    • 2
    • 3
  • Michael Kerber
    • 1
  1. 1.IST Austria (Institute of Science and Technology Austria)KlosterneuburgAustria
  2. 2.Departments of Computer Science and of MathematicsDuke UniversityDurhamUSA
  3. 3.Geomagic, Research Triangle ParkUSA

Personalised recommendations