Interaction between Task Oriented and Affective Information Processing in Cognitive Robotics

  • Pascal Haazebroek
  • Saskia van Dantzig
  • Bernhard Hommel
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 59)


There is an increasing interest in endowing robots with emotions. Robot control however is still often very task oriented. We present a cognitive architecture that allows the combination of and interaction between task representations and affective information processing. Our model is validated by comparing simulation results with empirical data from experimental psychology.


Affective Cognitive Architecture Cognitive Robotics Stimulus Response Compatibility Psychology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kraft, D., Baseski, E., Popovic, M., Batog, A.M., Kjær-Nielsen, A., Krüger, N., et al.: Exploration and Planning in a Three-Level Cognitive Architecture. In: International Conference on Cognitive Systems, CogSys (2008)Google Scholar
  2. 2.
    Breazeal, C.: Affective Interaction between Humans and Robots. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 582–591. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)CrossRefGoogle Scholar
  4. 4.
    Broekens, J., Haazebroek, P.: Emotion & Reinforcement: Affective Facial Expressions Facilitate Robot Learning. Adaptive Behavior (2003)Google Scholar
  5. 5.
    Chen, M., Bargh, J.A.: Consequences of Automatic Evaluation: Immediate Behavioral Predispositions to Approach or Avoid the Stimulus. Pers. Soc. Psychol. B. 25, 215–224 (1999)CrossRefGoogle Scholar
  6. 6.
    Beckers, T., De Houwer, J., Eelen, P.: Automatic Integration of Non-Perceptual Action Effect Features: the Case of the Associative Affective Simon Effect. Psychol. Res. 66(3), 166–173 (2002)CrossRefGoogle Scholar
  7. 7.
    Haazebroek, P., Raffone, A., Hommel, B.: HiTEC: A computational model of the interaction between perception and action (manuscript submitted for publication)Google Scholar
  8. 8.
    Hommel, B., Müsseler, J., Aschersleben, G., Prinz, W.: The Theory of Event Coding (TEC): A Framework for Perception and Action Planning. Behav. Brain Sci. 24, 849–937 (2001)CrossRefGoogle Scholar
  9. 9.
    James, W.: The Principles of Psychology. Dover Publications, New York (1890)CrossRefGoogle Scholar
  10. 10.
    Rumelhart, D.E., Hinton, G.E., McClelland, J.L.: A General Framework for Parallel Distributed Processing. In: Rumelhart, D.E., McClelland, J.L., the PDP (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 45–76. MIT Press, Cambridge (1986)Google Scholar
  11. 11.
    DeYoe, E.A., Van Essen, D.C.: Concurrent Processing Streams in Monkey Visual Cortex. Trends Neurosci. 11, 219–226 (1988)CrossRefGoogle Scholar
  12. 12.
    Elsner, B., Hommel, B.: Effect Anticipation and Action Control. J. Exp. Psychol. Human 27, 229–240 (2001)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2011

Authors and Affiliations

  • Pascal Haazebroek
    • 1
  • Saskia van Dantzig
    • 1
  • Bernhard Hommel
    • 1
  1. 1.Cognitive Psychology UnitLeiden UniversityLeidenThe Netherlands

Personalised recommendations