Curcumin: A Natural Herb Extract with Antiparasitic Properties

Chapter
Part of the Parasitology Research Monographs book series (Parasitology Res. Monogr., volume 1)

Abstract

This short review addresses the knowledge on curcumin use against parasite infections from traditional to modern medicine. Curcumin is the active ingredient of turmeric (Curcuma longa). The extract of the rhizome of turmeric has been traditionally used against various diseases including parasitic infections. Recently, the crude extract of turmeric and its active ingredient curcumin have been explored with respect to the biological and molecular activity against many pathogens. The antioxidant, antitumor, and anti-inflammatory properties of curcumin make it a promising natural drug to be used against bacterial, fungal, and viral agents. Antiparasitic effects of curcumin have attracted considerable attention over the last decades. Curcumin has been found to display activity against various parasites both in vitro and in vivo. However, the effects of curcumin become obvious in most cases at relatively high dose levels. The bio-molecular and cellular processes involved in curcumin effects on parasites are not sufficiently understood at present and more research in this area is inevitable to define the actual applicability of curcumin in parasite control measures and therapy. We here review the available information on the therapeutic potential of curcumin against parasites obtained from in vitro studies, animal models, and clinical trials.

References

  1. Adamson RE, Hall FR (1996) Matrix metalloproteinases mediate the metastatic phenotype of Theileria annulata-transformed cells. Parasitology 113:449–455PubMedCrossRefGoogle Scholar
  2. Adapala N, Chan MM (2008) Long-term use of an antiinflammatory, curcumin, suppressed type 1 immunity and exacerbated visceral leishmaniasis in a chronic experimental model. Lab Invest 88:1329–1339PubMedCrossRefGoogle Scholar
  3. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Re 23:363–398Google Scholar
  4. Allam G (2009) Immunomodulatory effects of curcumin treatment on murine schistosomiasis mansoni. Immunobiology 214:712–727PubMedCrossRefGoogle Scholar
  5. Allen PC, Danforth HD, Augustine PC (1998) Dietary modulation of avian coccidiosis. Int J Parasitol 28:1131–1140PubMedCrossRefGoogle Scholar
  6. Araujo CAC, Alegrio LV, Castro D, Lima MEF, Leon LL (1998) Leishmania amazonensis: in vivo experiments with diarylhetanoids from Leguminosae and Zingiberaceae plants. Mem Inst Oswaldo Cruz 93:306–310CrossRefGoogle Scholar
  7. Araujo CA, Alegrio LV, Gomes DC, Lima ME, Gomes-Cardoso L, Leon LL (1999) Studies on the effectiveness of diarylheptanoids derivatives against Leishmania amazonensis. Mem Inst Oswaldo Cruz 94:791–794PubMedCrossRefGoogle Scholar
  8. Atjanasuppat K, Wongkham W, Meepowpan P, Kittakoop P, Sobhon P, Bartlett A, Whitfield PJ (2009) In vitro screening for anthelmintic and antitumour activity of ethnomedicinal plants from Thailand. J Ethnopharmacol 123:475–482PubMedCrossRefGoogle Scholar
  9. Balasubramanyam M, Koteswari AA, Kumar RS, Monickaraj SF, Maheswari JU, Mohan V (2003) Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci 28:715–721PubMedCrossRefGoogle Scholar
  10. Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279:51163–51171PubMedCrossRefGoogle Scholar
  11. Barragan A, Brossier F, Sibley LD (2005) Transepithelial migration of Toxoplasma gondii involves an interaction of intercellular adhesion molecule 1 (ICAM-1) with the parasite adhesin MIC2. Cell Microbiol 7:561–568PubMedCrossRefGoogle Scholar
  12. Barthelemy S, Vergnes L, Moynier M, Guyot D, Labidalle S, Bahraoui E (1998) Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res Virol 149:43–52PubMedCrossRefGoogle Scholar
  13. Baylis HA, Megson A, Hall R (1995) Infection with Theileria annulata induces expression of matrix metalloproteinase 9 and transcription factor AP-1 in bovine leucocytes. Mol Biochem Parasitol 69:211–222PubMedCrossRefGoogle Scholar
  14. Boonjaraspinyo S, Boonmars T, Aromdee C, Srisawangwong T, Kaewsamut B, Pinlaor S, Yongvanit P, Puapairoj A (2009) Turmeric reduces inflammatory cells in hamster opisthorchiasis. Parasitol Res 105:1459–1463PubMedCrossRefGoogle Scholar
  15. Chakravorty SJ, Craig A (2005) The role of ICAM-1 in Plasmodium falciparum cytoadherence. Eur J Cell Biol 84:15–27PubMedCrossRefGoogle Scholar
  16. Chan MM, Adapala NS, Fong D (2005) Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania. Parasitol Res 96:49–56PubMedCrossRefGoogle Scholar
  17. Changtam C, de Koning HP, Ibrahim H, Sajid MS, Gould MK, Suksamrarn A (2010) Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. Eur J Med Chem 45:941–956PubMedCrossRefGoogle Scholar
  18. Chen XM, O'Hara SP, Huang BQ, Nelson JB, Lin JJ, Zhu G, Ward HD, LaRusso NF (2004) Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion. Infect Immun 72:6806–6816PubMedCrossRefGoogle Scholar
  19. Choi H, Chun YS, Kim SW, Kim MS, Park JW (2006) Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol Pharmacol 70:1664–1671. doi: 10.1124/mol.106.025817PubMedCrossRefGoogle Scholar
  20. Conseil V, Soete M, Dubremetz JF (1999) Serine protease inhibitors block invasion of host cells by Toxoplasma gondii. Antimicrob Agents Chemother 43:1358–1361PubMedGoogle Scholar
  21. Cui L, Miao J, Cui L (2007) Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother 51:488–494PubMedCrossRefGoogle Scholar
  22. Darkin-Rattray SJ, Gurnett AM, Myers RW, Dulski PM, Crumley TM, Allocco JJ, Cannova C, Meinke PT, Colletti SL, Bednarek MA, Singh SB, Goetz MA, Dombrowski AW, Polishook JD, Schmatz DM (1996) Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA 93:13143–13147PubMedCrossRefGoogle Scholar
  23. Das R, Roy A, Dutta N, Majumder HK (2008) Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis 13:867–882PubMedCrossRefGoogle Scholar
  24. de Sousa KP, Atouguia J, Silva MS (2010) Partial biochemical characterization of a metalloproteinase from the bloodstream forms of Trypanosoma brucei brucei parasites. Protein J 29:283–289PubMedCrossRefGoogle Scholar
  25. Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Ray C (1968) Screening of Indian plants for biological activity: I. Indian J Exp Biol 6:232–247PubMedGoogle Scholar
  26. Eckstein-Ludwig U, Webb RJ, Van G, East JM, Lee AG, Kimura M, O'Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961PubMedCrossRefGoogle Scholar
  27. El-Ansary AK, Ahmed SA, Aly SA (2007) Antischistosomal and liver protective effects of Curcuma longa extract in Schistosoma mansoni infected mice. Indian J Exp Biol 45(9):791–801PubMedGoogle Scholar
  28. El-Banhawey MA, Ashry MA, El-Ansary AK, Aly SA (2007) Effect of Curcuma longa or praziquantel on Schistosoma mansoni infected mice liver: histological and histochemical study. Indian J Exp Biol 45(10):877–889PubMedGoogle Scholar
  29. Entrala E, Mascaro C, Barrett J (1997) Anti-oxidant enzymes in Cryptosporidium parvum oocysts. Parasitology 114(Pt 1):13–17PubMedCrossRefGoogle Scholar
  30. Forne JR, Yang S, Du C, Healey MC (1996) Efficacy of serine protease inhibitors against Cryptosporidium parvum infection in a bovine fallopian tube epithelial cell culture system. J Parasitol 82:638–640CrossRefGoogle Scholar
  31. Fry CJ, Peterson CL (2002) Unlocking the gates to gene expression. Science 295:1847–1848PubMedCrossRefGoogle Scholar
  32. Gerrity D, Ryu H, Crittenden J, Abbaszadegan M (2008) Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light. J Environ Sci Health A Toxicol Hazard Subst Environ Eng 43:1261–1270CrossRefGoogle Scholar
  33. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochemical Pharmacology 75:787–809PubMedCrossRefGoogle Scholar
  34. Gomes DC, Alegrio LV, de Lima ME, Leon LL, Araujo CA (2002a) Synthetic derivatives of curcumin and their activity against Leishmania amazonensis. Arzneimittelforschung 52:120–124Google Scholar
  35. Gomes DC, Alegrio LV, Leon LL, de Lima ME (2002b) Total synthesis and anti-leishmanial activity of some curcumin analogues. Arzneimittelforschung 52:695–698Google Scholar
  36. Green SJ, Crawford RM, Hockmeyer JT, Meltzer MS, Nacy CA (1990) Leishmania major amastigotes initiate the L-arginine dependent killing mechanism in IFN-c-stimulated macrophages by induction of tumor necrosis factor-a. J Immunol 145:4290–4297PubMedGoogle Scholar
  37. Huang MT, Lysz T, Ferraro T, Abidi TF, Laskin JD, Conney AH (1991) Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51:813–819PubMedGoogle Scholar
  38. Hudson AL, Sotirchos IM, Davey MW (2010) Substrate specificity of the mitochondrial thioredoxin reductase of the parasitic nematode Haemonchus contortus. Parasitol Res 107:487–493PubMedCrossRefGoogle Scholar
  39. Ji HF, Shen L (2009) Interactions of curcumin with the PfATP6 model and the implications for its antimalarial mechanism. Bioorg Med Chem Lett 19:2453–2455PubMedCrossRefGoogle Scholar
  40. Joe B, Lokesh BR (1994) Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim Biophys Acta 1224:255–263PubMedCrossRefGoogle Scholar
  41. Jordan WC, Drew CR (1996) Curcumin – a natural herb with anti-HIV activity. J Natl Med Assoc 88:333PubMedGoogle Scholar
  42. Kang J, Chen J, Shi Y, Jia J, Zhang Y (2005) Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol 69:1205–1213PubMedCrossRefGoogle Scholar
  43. Khalafalla RE, Müller U, Shahiduzzaman M, Dyachenko V, Desouky AY, Alber G, Daugschies A (2010) Effects of curcumin (diferuloylmethane) on Eimeria tenella sporozoites in vitro. Parasitol Res. doi:10.1007/s00436-010-2129-y Google Scholar
  44. Kim GM, Choi KJ, Lee HS (2003) Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J Agric Food Chem 51:1578–1581PubMedCrossRefGoogle Scholar
  45. Kiuchi F, Goto Y, Sugimoto N, Akao N, Kondo K, Tsuda Y (1993) Nematocidal activity of turmeric: synergistic action of curcuminoids. Chem Pharm Bull 41:1640–1643PubMedGoogle Scholar
  46. Koide T, Nose M, Ogihara Y, Yabu Y, Ohta N (2002) Leishmanicidal effect of curcumin in vitro. Biol Pharm Bull 25:131–133PubMedCrossRefGoogle Scholar
  47. Lehrmann H, Pritchard LL, Harel-Bellan A (2002) Histone acetyltransferasesand deacetylases in the control of cell proliferation and differentiation. Adv Cancer Res 86:41–65PubMedCrossRefGoogle Scholar
  48. Leitch GJ, Qing HE (1999) Reactive nitrogen and oxygen species ameliorate experimental cryptosporidiosis in the neonatal BALB/ c mouse model. Infect Immun 67:5885–5891PubMedGoogle Scholar
  49. Liew FY, Millott S, Parkinson C, Palmer RM, Moncada S (1990) Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J Immunol 144:4794–4797PubMedGoogle Scholar
  50. Liew FY, Li Y, Moss D, Parkinson C, Rogers MV, Moncada S (1991) Resistance to Leishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages. Eur J Immunol 21:3009–3014PubMedCrossRefGoogle Scholar
  51. Liu J, Enomoto S, Lancto CA, Abrahamsen MS, Rutherford MS (2008) Inhibition of apoptosis in Cryptosporidium parvum-infected intestinal epithelial cells is dependent on survivin. Infect Immun 76(8):3784–3792PubMedCrossRefGoogle Scholar
  52. Lovett JL, Sibley LD (2003) Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J Cell Sci 116:3009–3016PubMedCrossRefGoogle Scholar
  53. Lovett JL, Marchesini N, Moreno SN, Sibley LD (2002) Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1, 4, 5-triphosphate (IP(3))/ryanodine-sensitive stores. J Biol Chem 277:25870–25876PubMedCrossRefGoogle Scholar
  54. Magalhaes LG, Machado CB, Morais ER, Moreira EB, Soares CS, da Silva SH, Da Silva Filho AA, Rodrigues V (2009) In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Parasitol Res 104:1197–1201PubMedCrossRefGoogle Scholar
  55. Mahady GB, Pendland SL, Yun G, Lu ZZ (2002) Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res 22:4179–4181PubMedGoogle Scholar
  56. Mangoyi R, Hayeshi R, Ngadjui B, Ngandeu F, Bezabih M, Abegaz B, Razafimahefa S, Rasoanaivo P, Mukanganyama S (2010) Glutathione transferase from Plasmodium falciparum – Interaction with malagashanine and selected plant natural products. J Enzyme Inhib Med Chem 25:854–862PubMedCrossRefGoogle Scholar
  57. Martinelli A, Rodrigues LA, Cravo P (2008) Plasmodium chabaudi: efficacy of artemisinin + curcumin combination treatment on a clone selected for artemisinin resistance in mice. Exp Parasitol 119:304–307PubMedCrossRefGoogle Scholar
  58. Mulabagal V, Calderon AI (2010) Development of binding assays to screen ligands for Plasmodium falciparum thioredoxin and glutathione reductases by ultrafiltration and liquid chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:987–993PubMedCrossRefGoogle Scholar
  59. Nadkarni KM (1976) Indian Materia Medica. Popular Prakashan, Bombay, p 1074Google Scholar
  60. Nandakumar DN, Nagaraj VA, Vathsala PG, Rangarajan P, Padmanaban G (2006) Curcumin-artemisinin combination therapy for malaria. Antimicrob Agents Chemother 50:1859–1860PubMedCrossRefGoogle Scholar
  61. Negi PS, Jayaprakasha GK, Jagan L, Rao M, Sakariah KK (1999) Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem 47:4297–4300PubMedCrossRefGoogle Scholar
  62. Nesterenko MV, Woods K, Upton SJ (1999) Receptor/ligand interactions between Cryptosporidium parvum and the surface of the host cell. Biochim Biophys Acta 1454:165–173PubMedGoogle Scholar
  63. Nogueira de Melo AC, de Souza EP, Elias CG, dos Santos AL, Branquinha MH, vila-Levy CM, dos Reis FC, Costa TF, Lima AP, de Souza Pereira MC, Meirelles MN, Vermelho AB (2010) Detection of matrix metallopeptidase-9-like proteins in Trypanosoma cruzi. Exp Parasitol 125:256–263Google Scholar
  64. Nose M, Koide T, Ogihara Y, Yabu Y, Ohta N (1998) Trypanocidal effects of curcumin in vitro. Biol Pharm Bull 21:643–645PubMedGoogle Scholar
  65. Ojcius DM, Perfettini JL, Bonnin A, Laurent F (1999) Caspase-dependent apoptosis during infection with Cryptosporidium parvum. Microbes Infect 1(14):1163–1168PubMedCrossRefGoogle Scholar
  66. Okhuysen PC, DuPont HL, Sterling CR, Chappell CL (1994) Arginine aminopeptidase, an integral membrane protein of the Cryptosporidium parvum sporozoite. Infect Immun 62:4667–4670PubMedGoogle Scholar
  67. Okhuysen PC, Chappell CL, Kettner C, Sterling CR (1996) Cryptosporidium parvum metalloaminopeptidase inhibitors prevent in vitro excystation. Antimicrob Agents Chemother 40:2781–2784PubMedGoogle Scholar
  68. Pérez-Arriaga L, Mendoza-Magaña ML, Cortés-Zárate R, Corona-Rivera A, Bobadilla-Morales L, Troyo-Sanromán R, Ramírez-Herrera MA (2006) Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop 98(2):152–161PubMedCrossRefGoogle Scholar
  69. Pinlaor S, Yongvanit P, Prakobwong S, Kaewsamut B, Khoontawad J, Pinlaor P, Hiraku Y (2009) Curcumin reduces oxidative and nitrative DNA damage through balancing of oxidant–antioxidant status in hamsters infected with Opisthorchis viverrini. Mol Nutr Food Res 53:1316–1328PubMedCrossRefGoogle Scholar
  70. Pinlaor S, Prakobwong S, Hiraku Y, Pinlaor P, Laothong U, Yongvanit P (2010) Reduction of periductal fibrosis in liver fluke-infected hamsters after long-term curcumin treatment. Eur J Pharmacol 638:134–141PubMedCrossRefGoogle Scholar
  71. Pollok RC, McDonald V, Kelly P, Farthing MJ (2003) The role of Cryptosporidium parvum-derived phospholipase in intestinal epithelial cell invasion. Parasitol Res 90:181–186PubMedGoogle Scholar
  72. Rao CV, Rivenson A, Simi B, Reddy BS (1995) Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55:259–266PubMedGoogle Scholar
  73. Rasmussen HB, Christensen SB, Kuist LP, Karazmi AA (2000) Simple and effective separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med 66:396–398PubMedCrossRefGoogle Scholar
  74. Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun 326:472–474PubMedCrossRefGoogle Scholar
  75. Rider SD Jr, Zhu G (2009) An apicomplexan ankyrin-repeat histone deacetylase with relatives in photosynthetic eukaryotes. Int J Parasitol 39:747–754PubMedCrossRefGoogle Scholar
  76. Ryu H, Gerrity D, Crittenden JC, Abbaszadegan M (2008) Photocatalytic inactivation of Cryptosporidium parvum with TiO(2) and low-pressure ultraviolet irradiation. Water Res 42:1523–1530PubMedCrossRefGoogle Scholar
  77. Saffer LD, Schwartzman JD (1991) A soluble phospholipase of Toxoplasma gondii associated with host cell penetration. J Protozool 38:454–460PubMedGoogle Scholar
  78. Saffer LD, Long Krug SA, Schwartzman JD (1989) The role of phospholipase in host cell penetration by Toxoplasma gondii. Am J Trop Med Hyg 40:145–149PubMedGoogle Scholar
  79. Saleheen D, Ali SA, Ashfaq K, Siddiqui AA, Agha A, Yasinzai MM (2002) Latent activity of curcumin against leishmaniasis in vitro. Biol Pharm Bull 25:386–389PubMedCrossRefGoogle Scholar
  80. Shahiduzzaman M, Dyachenko V, Khalafalla RE, Desouky AY, Daugschies A (2009) Effects of curcumin on Cryptosporidium parvum in vitro. Parasitol Res 105:1155–1161PubMedCrossRefGoogle Scholar
  81. Shapira S, Harb OS, Margarit J, Matrajt M, Han J, Hoffmann A, Freedman B, May MJ, Roos DS, Hunter CA (2005) Initiation and termination of NF-kappaB signaling by the intracellular protozoan parasite Toxoplasma gondii. J Cell Sci 118:3501–3508PubMedCrossRefGoogle Scholar
  82. Shen L, Ji HF (2007) Theoretical study on physicochemical properties of curcumin. Spectrochim Acta A Mol Biomol Spec- trosc 67: 619–623CrossRefGoogle Scholar
  83. Shim JS, Kim JH, Cho HY, Yum YN, Kim SH, Park HJ, Shim BS, Choi SH, Kwon HJ (2003) Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem Biol 10:695–704PubMedCrossRefGoogle Scholar
  84. Shishodia S, Amin HM, Lai R et al (2005) Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 70:700–713PubMedCrossRefGoogle Scholar
  85. Srinivasan A, Menon VP (2003) Protection of pancreatic β-cell by the potential antioxidant bis-o-hydroxycinnamoyl methane, analogue of natural curcuminoid in experimental diabetes. J Pharm Pharm Sci 6:327–333Google Scholar
  86. Sui Z, Salto R, Li J, Craik C, Ortiz de Montellano PR (1993) Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg Med Chem 1:415–422PubMedCrossRefGoogle Scholar
  87. Surh YJ (2002) Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem Toxicol 40:1091–1097PubMedCrossRefGoogle Scholar
  88. Ukil A, Maity S, Karmakar S, Datta N, Vedasiromoni JR, Das PK (2003) Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol 139:209–218PubMedCrossRefGoogle Scholar
  89. Varez-Rueda N, Biron M, Le PP (2009) Infectivity of Leishmania mexicana is associated with differential expression of protein kinase C-like triggered during a cell-cell contact. PLoS One 4:7581CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of ParasitologyBangladesh Agricultural UniversityMymensinghBangladesh
  2. 2.Institute of ParasitologyUniversity of LeipzigLeipzigGermany

Personalised recommendations