Cryptanalysis of the RSA Subgroup Assumption from TCC 2005

  • Jean-Sébastien Coron
  • Antoine Joux
  • Avradip Mandal
  • David Naccache
  • Mehdi Tibouchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6571)

Abstract

At TCC 2005, Groth underlined the usefulness of working in small RSA subgroups of hidden order. In assessing the security of the relevant hard problems, however, the best attack considered for a subgroup of size 22ℓ had a complexity of O(2). Accordingly, ℓ= 100 bits was suggested as a concrete parameter.

This paper exhibits an attack with a complexity of roughly 2ℓ/2 operations, suggesting that Groth’s original choice of parameters was overly aggressive. It also discusses the practicality of this new attack and various implementation issues.

Keywords

rsa moduli hidden order subgroup cryptanalysis 

References

  1. 1.
    Bernstein, D.J.: Fast multiplication and its applications. In: Algorithmic number theory: lattices, number fields, curves and cryptography. MSRI Publications, vol. 44, pp. 325–384. Cambridge University Press, Cambridge (2008)Google Scholar
  2. 2.
    Bluestein, L.I.: A linear filtering approach to the computation of the discrete Fourier transform. IEEE Trans. Electroacoustics 18, 451–455 (1970)CrossRefGoogle Scholar
  3. 3.
    Bostan, A.: Algorithmique efficace pour des opérations de base en calcul formel, Ph.D. thesis, École polytechnique (2003) (in English)Google Scholar
  4. 4.
    Bostan, A., Schost, E.: Polynomial evaluation and interpolation on special sets of points. Journal of Complexity 21(4), 420–446 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Coron, J.-S., Joux, A., Mandal, A., Naccache, D., Tibouchi, M.: Cryptanalysis of the RSA subgroup assumption from TCC 2005, Cryptology ePrint Archive, Report 2010/650 (2005), http://eprint.iacr.org/, Full version of this paper
  6. 6.
    Damgård, I.B., Geisler, M., Krøigaard, M.: Efficient and Secure Comparison for On-Line Auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 416–430. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Groth, J.: Cryptography in Subgroups of \(Z_n^*\). In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 50–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Hanrot, G., Quercia, M., Zimmermann, P.: The middle product algorithm, I. In: Applicable Algebra in Engineering, Communication and Computing, vol. 14, pp. 415–438. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Hart, W.B., Harvey, D., et al.: Fast library for number theory, http://www.flintlib.org
  10. 10.
    Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry, P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmermann, P.: Factorization of a 768-Bit RSA Modulus. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Paillier, P., Pointcheval, D.: Efficient Public-Key Cryptosystems Provably Secure Against Active Adversaries. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 165–179. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Rabiner, L.R., Schafer, R.W., Rader, C.M.: The chirp z-transform algorithm and its applications. Bell System Tech. J. 48, 1249–1292 (1969)MathSciNetGoogle Scholar
  13. 13.

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Jean-Sébastien Coron
    • 1
  • Antoine Joux
    • 2
    • 3
  • Avradip Mandal
    • 1
  • David Naccache
    • 4
  • Mehdi Tibouchi
    • 1
    • 4
  1. 1.Université du LuxembourgLuxembourgLuxembourg
  2. 2.Direction générale de l’armement (DGA)France
  3. 3.Laboratoire PRISMUniversité de Versailles–Saint-QuentinVersailles CedexFrance
  4. 4.Département d’informatique, Groupe de cryptographieÉcole normale supérieureParis Cedex 05France

Personalised recommendations