Advertisement

Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization

  • Brent Waters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6571)

Abstract

We present a new methodology for realizing Ciphertext-Policy Attribute Encryption (CP-ABE) under concrete and noninteractive cryptographic assumptions in the standard model. Our solutions allow any encryptor to specify access control in terms of any access formula over the attributes in the system. In our most efficient system, ciphertext size, encryption, and decryption time scales linearly with the complexity of the access formula. The only previous work to achieve these parameters was limited to a proof in the generic group model.

We present three constructions within our framework. Our first system is proven selectively secure under a assumption that we call the decisional Parallel Bilinear Diffie-Hellman Exponent (PBDHE) assumption which can be viewed as a generalization of the BDHE assumption. Our next two constructions provide performance tradeoffs to achieve provable security respectively under the (weaker) decisional Bilinear-Diffie-Hellman Exponent and decisional Bilinear Diffie-Hellman assumptions.

Keywords

Access Structure Random Oracle Public Parameter Challenge Ciphertext Linear Secret Share Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.: Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Al-Riyami, S.S., Malone-Lee, J., Smart, N.P.: Escrow-free encryption supporting cryptographic workflow. Int. J. Inf. Sec. 5(4), 217–229 (2006)CrossRefGoogle Scholar
  4. 4.
    Bagga, W., Molva, R., Crosta, S.: Policy-based encryption schemes from bilinear pairings. In: ASIACCS, p. 368 (2006)Google Scholar
  5. 5.
    Barbosa, M., Farshim, P.: Secure cryptographic workflow in the standard model. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 379–393. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel Institute of Technology, Technion, Haifa, Israel (1996)Google Scholar
  7. 7.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)Google Scholar
  8. 8.
    Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: An online social network with user defined privacy. In: ACM SIGCOMM (2009)Google Scholar
  9. 9.
    Bobba, R., Fatemieh, O., Khan, F., Gunter, A.K.C.A., Khurana, H., Prabhakaran, M.: Attribute-based messaging: Access control and confidentiality (2009) (manuscript)Google Scholar
  10. 10.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS, pp. 647–657 (2007)Google Scholar
  15. 15.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (Without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Bradshaw, R.W., Holt, J.E., Seamons, K.E.: Concealing complex policies with hidden credentials. In: ACM Conference on Computer and Communications Security, pp. 146–157 (2004)Google Scholar
  18. 18.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Chen, L., Harrison, K., Moss, A., Soldera, D., Smart, N.P.: Certification of Public Keys within an Identity Based System. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 322–333. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of Multiple Trust Authorities in Pairing Based Cryptosystems. In: Davida, G.I., Frankel, Y., Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Cheung, L., Newport, C.C.: Provably secure ciphertext policy abe. In: ACM Conference on Computer and Communications Security, pp. 456–465 (2007)Google Scholar
  23. 23.
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: IMA Int. Conf., pp. 360–363 (2001)Google Scholar
  24. 24.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute based encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM Conference on Computer and Communications Security, pp. 89–98 (2006)Google Scholar
  28. 28.
    Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption. Cryptology ePrint Archive, Report 2010/351 (2010), http://eprint.iacr.org/
  31. 31.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In: VLDB, pp. 898–909 (2003)Google Scholar
  33. 33.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: ACM Conference on Computer and Communications Security, pp. 195–203 (2007)Google Scholar
  34. 34.
    Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based systems. In: ACM Conference on Computer and Communications Security, pp. 99–112 (2006)Google Scholar
  35. 35.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  37. 37.
    Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-dimensional range query over encrypted data. In: IEEE Symposium on Security and Privacy, pp. 350–364 (2007)Google Scholar
  38. 38.
    Smart, N.P.: Access Control Using Pairing Based Cryptography. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 111–121. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  39. 39.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)Google Scholar
  40. 40.
    Traynor, P., Butler, K.R.B., Enck, W., McDaniel, P.: Realizing massive-scale conditional access systems through attribute-based cryptosystems. In: NDSS (2008)Google Scholar
  41. 41.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  42. 42.
    Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. Cryptology ePrint Archive, Report 2008/290 (2008), http://eprint.iacr.org/

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Brent Waters
    • 1
  1. 1.University of TexasAustin

Personalised recommendations