Cryptanalysis of Multivariate and Odd-Characteristic HFE Variants

  • Luk Bettale
  • Jean-Charles Faugère
  • Ludovic Perret
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6571)

Abstract

We investigate the security of a generalization of HFE (multivariate and odd-characteristic variants). First, we propose an improved version of the basic Kipnis-Shamir key recovery attack against HFE. Second, we generalize the Kipnis-Shamir attack to Multi-HFE. The attack reduces to solve a MinRank problem directly on the public key. This leads to an improvement of a factor corresponding to the square of the degree of the extension field. We used recent results on MinRank to show that our attack is polynomial in the degree of the extension field. It appears that multi-HFE is less secure than original HFE for equal-sized keys. Finally, adaptations of our attack overcome several variants (i.e. minus modifier and embedding). As a proof of concept, we have practically broken the most conservative parameters given by Chen, Chen, Ding, Werner and Yang in 9 days for 256 bits security. All in all, our results give a more precise picture on the (in)security of several variants of HFE proposed these last years.

Keywords

Hidden Field Equations MinRank Gröbner bases 

References

  1. 1.
    Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies in Mahematics, vol. 3. AMS, Providence (1994)MATHGoogle Scholar
  2. 2.
    Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations. In: Proc. International Conference on Polynomial System Solving (ICPSS), pp. 71–75 (2004)Google Scholar
  3. 3.
    Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic behaviour of the degree of regularity of semi-regular polynomial systems. In: Proc. of MEGA 2005, Eighth International Symposium on Effective Methods in Algebraic Geometry (2005)Google Scholar
  4. 4.
    Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. Journal of Mathematical Cryptology, 177–197 (2009)Google Scholar
  5. 5.
    Billet, O., Patarin, J., Seurin, Y.: Analysis of Intermediate Field Systems. In: SCC 2008 (2008)Google Scholar
  6. 6.
    Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Bosma, W., Cannon, J.J., Playoust, C.: The Magma algebra system I: The user language. Journal of Symbolic Computation 24(3-4), 235–265 (1997)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University of Innsbruck (1965)Google Scholar
  9. 9.
    Buss, W., Frandsen, G., Shallit, J.: The computational complexity of some problems of linear algebra. Journal of Computer and System Sciences (1999)Google Scholar
  10. 10.
    Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Chen, C.H.O., Chen, M.S., Ding, J., Werner, F., Yang, B.Y.: Odd-char multivariate Hidden Field Equations. Cryptology ePrint Archive (2008), http://eprint.iacr.org/2008/543
  12. 12.
    Courtois, N.T.: Efficient zero-knowledge authentication based on a linear algebra problem MinRank. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 402–421. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Ding, J., Schmidt, D., Werner, F.: Algebraic attack on HFE revisited. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 215–227. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra 139, 61–88 (1999)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation ISSAC, pp. 75–83. ACM Press, New York (2002)CrossRefGoogle Scholar
  17. 17.
    Faugère, J.-C.: Algebraic cryptanalysis of HFE using Gröbner bases. Reasearch report RR-4738, INRIA (2003), http://hal.inria.fr/inria-00071849/PDF/RR-4738.pdf
  18. 18.
    Faugère, J.-C.: FGb: A Library for Computing Gröbner Bases. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 84–87. Springer, Heidelberg (2010), http://www-salsa.lip6.fr/~jcf/Papers/ICMS.pdf CrossRefGoogle Scholar
  19. 19.
    Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE) cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008)Google Scholar
  21. 21.
    Faugère, J.-C., Safey El Din, M., Spaenlehauer, P.J.: Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation 2010 – ISSAC 2010 (2010)Google Scholar
  22. 22.
    Faugère, J.C., Safey El Din, M., Spaenlehauer, P.J.: Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms and Complexity. Journal of Symbolic Computation, 1–39 (2010)Google Scholar
  23. 23.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)MATHGoogle Scholar
  24. 24.
    Granboulan, L., Joux, A., Stern, J.: Inverting HFE is quasipolynomial. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Jiang, X., Ding, J., Hu, L.: Kipnis-Shamir attack on HFE revisited. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 399–411. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)Google Scholar
  27. 27.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)Google Scholar
  28. 28.
    Patarin, J.: Cryptoanalysis of the Matsumoto and Imai public key scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  29. 29.
    Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)Google Scholar
  30. 30.
    Wolf, C., Preneel, B.: Equivalent keys in HFE, C*, and variations. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 33–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Wolf, C., Preneel, B.: Large superfluous keys in multivariate quadratic asymmetric systems. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 275–287. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Luk Bettale
    • 1
    • 2
  • Jean-Charles Faugère
    • 1
    • 2
  • Ludovic Perret
    • 1
    • 2
  1. 1.UPMC Univ Paris 06, UMR 7606, LIP6INRIA, Paris-Rocquencourt Center, SALSA ProjectParisFrance
  2. 2.UMR 7606, LIP6CNRSParisFrance

Personalised recommendations