On the Impossibility of Instantiating PSS in the Standard Model

  • Rishiraj Bhattacharyya
  • Avradip Mandal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6571)

Abstract

In this paper we consider the problem of securely instantiating Probabilistic Signature Scheme (PSS) in the standard model. PSS, proposed by Bellare and Rogaway [3] is a widely deployed randomized signature scheme, provably secure (unforgeable under adaptively chosen message attacks) in Random Oracle Model.

Our main result is a black-box impossibility result showing that one can not prove unforgeability of PSS against chosen message attacks using blackbox techniques even assuming existence of ideal trapdoor permutations (a strong abstraction of trapdoor permutations which inherits all security properties of a random permutation, introduced by Kiltz and Pietrzak in Eurocrypt 2009) or the recently proposed lossy trapdoor permutations [20]. Moreover, we show onewayness, the most common security property of a trapdoor permutation does not suffice to prove even the weakest security criteria, namely unforgeability under zero message attack. Our negative results can easily be extended to any randomized signature scheme where one can recover the random string from a valid signature.

Keywords

PSS Blackbox Reductions Randomized Signature Standard Model 

References

  1. 1.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with RSA and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Bhattacharyya, R., Mandal, A.: On the impossibility of instantiating pss in the standard model: Full version of this paper. Cryptology ePrint Archive, Report 2010/651 (2010)Google Scholar
  5. 5.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: STOC, pp. 209–218 (1998)Google Scholar
  6. 6.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Coron, J.-S., Mandal, A.: PSS is secure against random fault attacks. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 653–666. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic constructions. In: FOCS, pp. 305–313 (2000)Google Scholar
  12. 12.
    Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: FOCS, pp. 325–335 (2000)Google Scholar
  13. 13.
    Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor functions on trapdoor predicates. In: FOCS, pp. 126–135 (2001)Google Scholar
  14. 14.
    Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir paradigm. In: FOCS, pp. 102–113 (2003)Google Scholar
  15. 15.
    Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: STOC, pp. 44–61 (1989)Google Scholar
  17. 17.
    Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313. Springer, Heidelberg (2010)Google Scholar
  18. 18.
    Kiltz, E., Pietrzak, K.: On the security of padding-based encryption schemes – or – why we cannot prove OAEP secure in the standard model. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 389–406. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Paillier, P.: Impossibility proofs for RSA signatures in the standard model. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 31–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC, pp. 187–196 (2008)Google Scholar
  21. 21.
    Simon, D.R.: Findings Collisions on a One-Way Street: Can Secure Hash Functions Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Rishiraj Bhattacharyya
    • 1
  • Avradip Mandal
    • 2
  1. 1.Cryptology Research Group, Applied Statistics UnitIndian Statistical InstituteKolkataIndia
  2. 2.Université du LuxembourgLuxembourg

Personalised recommendations