Chosen Ciphertext Secure Encryption under Factoring Assumption Revisited

  • Qixiang Mei
  • Bao Li
  • Xianhui Lu
  • Dingding Jia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6571)

Abstract

In Eurocrypt 2009, Hofheinz and Kiltz proposed a practical chosen ciphertext (CCA) secure public key encryption under factoring assumption based on Rabin trapdoor one-way permutation.

We show that when the modulus is special such that \(Z_N^*\) has semi-smooth order, the instantiation of Hofheinz-Kiltz 09 scheme (HK09) over a much smaller subgroup of quadratic residue group (Semi-smooth Subgroup) is CCA secure as long as this type of modulus is hard to be factored. Since the exponent domain of this instantiation is much smaller than the original one, the efficiency is substantially improved.

In addition, we show how to construct a practical CCA secure encryption scheme from ElGamal trapdoor one-way function under factoring assumption. When instantiated over Semi-smooth Subgroup, this scheme has even better decryption efficiency than HK09 instantiation.

Keywords

public key encryption chosen ciphertext secure semi-smooth subgroup factoring assumption 

References

  1. 1.
    Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM Journal on Computing 15(2), 364–383 (1986)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Blum, M., Goldwasser, S.: An probabilistic public key encryption scheme which hides all partial information. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 289–299. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  3. 3.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cramer, R., Hofheinz, D., Kiltz, E.: A Twist on the Naor-Yung Paradigm and Its Application to Efficient CCA-Secure Encryption from Hard Search Problems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 146–164. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Cash, D.M., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: Proceedings of the 23rd ACM Symposium on Theory of Computing, pp. 542–552. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  10. 10.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    ElGama, T.: A public key cryptosystem and a signature scheme based on discrete loga- rithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)CrossRefGoogle Scholar
  12. 12.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 25–32. ACM Press, New York (1989)Google Scholar
  13. 13.
    Groth, J.: Cryptography in subgroups of \(Z_n^*\). In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 50–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and efficient public-key encryption from computational Diffie-Hellman in the standard model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryption under the computational Diffie-Hellman assumption. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Factoring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Yehuda Lindell, A.: Simpler Construction of CCA2-Secure Public-Key Encryption under General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 241–254. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    McCurley, K.: A Key Distribution System Equivalent to Factoring. Journal of Cryptology 1(2), 95–105 (1988)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring. SIAM Journal on Computing 31(5), 1383–1404 (2002)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing 2008, pp. 187–196. ACM, New York (2008)Google Scholar
  25. 25.
    Rabin, M.O.: Digital signatures and public key functions as intractable as factorization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology (January 1979)Google Scholar
  26. 26.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  27. 27.
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Shoup, V.: Using Hash Functions as a Hedge against Chosen Ciphertext Attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Qixiang Mei
    • 1
    • 2
  • Bao Li
    • 1
  • Xianhui Lu
    • 1
  • Dingding Jia
    • 1
  1. 1.State Key Laboratory of Information SecurityGraduate University of Chinese Academy of SciencesBeijingChina
  2. 2.School of InformationGuangdong Ocean UniversityZhanjiangChina

Personalised recommendations