Oblivious Transfer with Hidden Access Control Policies

  • Jan Camenisch
  • Maria Dubovitskaya
  • Gregory Neven
  • Gregory M. Zaverucha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6571)


Consider a database where each record has different access control policies. These policies could be attributes, roles, or rights that the user needs to have in order to access the record. Here we provide a protocol that allows the users to access the database record while: (1) the database does not learn who queries a record; (2) the database does not learn which record is being queried, nor the access control policy of that record; (3) the database does not learn whether a user’s attempt to access a record was successful or not; (4) the user can only obtain a single record per query; (5) the user can only access those records for which she has the correct permissions; (6) the user does not learn any other information about the database structure and the access control policies other than whether he was granted access to the queried record, and if so, the content of the record; and (7) the users’ credentials can be revoked.

Our scheme builds on the one by Camenisch, Dubovitskaya and Neven (CCS’09), who consider oblivious transfer with access control when the access control policies are public.


Privacy Oblivious Transfer Anonymous Credentials Access Control 


  1. 1.
    Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bradshaw, R.W., Holt, J.E., Seamons, K.E.: Concealing complex policies with hidden credentials. In: 11th (CCS 2004), pp. 46–157. ACM Press, New York (2004)Google Scholar
  5. 5.
    Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute of Science, Rehovot 76100, Israel (June 1995)Google Scholar
  6. 6.
    Canetti, R.: Security and composition of multi-party cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control. In: ACM CCS 2009, pp. 131–140. ACM Press, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database using stateful anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. Cryptology ePrint Archive, Report 2010/196 (2010)Google Scholar
  13. 13.
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Frikken, K.B., Atallah, M.J., Li, J.: Attribute-based access control with hidden policies and hidden credentials. IEEE Trans. Computers 55(10), 1259–1270 (2006)CrossRefGoogle Scholar
  16. 16.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Holt, J.E., Bradshaw, R.W., Seamons, K.E., Orman, H.K.: Hidden credentials. In: ACM WPES 2003, USA, pp. 1–8. ACM, New York (2003)CrossRefGoogle Scholar
  18. 18.
    Herranz, J.: Restricted adaptive oblivious transfer. Cryptology ePrint Archive, Report 2008/182 (2008)Google Scholar
  19. 19.
    Li, N., Winsborough, W.: Towards practical automated trust negotiation. In: POLICY 2002, Washington, DC, USA, p. 92. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  20. 20.
    Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)Google Scholar
  22. 22.
    Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive systems. In: 7th ACM CCS, pp. 245–254. ACM Press, New York (2000)Google Scholar
  23. 23.
    Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application to secure message transmission. In: Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 184–200. IEEE Computer Society, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  24. 24.
    Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken Computation Laboratory (1981)Google Scholar
  25. 25.
    Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, Los Alamitos (1982)Google Scholar
  26. 26.
    Yu, T., Winslett, M.: A unified scheme for resource protection in automated trust negotiation. In: IEEE Symposium on Security and Privacy (S&P 2003), USA, pp. 110–122. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  27. 27.
    Yu, T., Winslett, M., Seamons, K.E.: Interoperable strategies in automated trust negotiation. In: ACM CCS 2001, pp. 146–155. ACM Press, New York (2001)CrossRefGoogle Scholar
  28. 28.
    Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 119. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Jan Camenisch
    • 1
  • Maria Dubovitskaya
    • 1
  • Gregory Neven
    • 1
  • Gregory M. Zaverucha
    • 2
  1. 1.IBM Research - ZurichRuschlikonSwitzerland
  2. 2.Certicom ResearchCanada

Personalised recommendations