(If) Size Matters: Size-Hiding Private Set Intersection

  • Giuseppe Ateniese
  • Emiliano De Cristofaro
  • Gene Tsudik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6571)

Abstract

Modern society is increasingly dependent on, and fearful of, the availability of electronic information. There are numerous examples of situations where sensitive data must be – sometimes reluctantly – shared between two or more entities without mutual trust. As often happens, the research community has foreseen the need for mechanisms to enable limited (privacy-preserving) sharing of sensitive information and a number of effective solutions have been proposed. Among them, Private Set Intersection (PSI) techniques are particularly appealing for scenarios where two parties wish to compute an intersection of their respective sets of items without revealing to each other any other information. Thus far, ”any other information” has been interpreted to mean any information about items not in the intersection.

In this paper, we motivate the need for Private Set Intersection with a stronger privacy property of hiding the size of the set held by one of the two entities (”client”). We introduce the notion of Size-Hiding Private Set Intersection (SHI-PSI) and propose an efficient construction secure under the RSA assumption in the Random Oracle Model. We also show that input size-hiding is attainable at very low additional cost.

References

  1. 1.
    Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3), 185–215 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Benaloh, J., De Mare, M.: One-way accumulators: A decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Coron, J.-S., Naccache, D.: Security Analysis of the Gennaro-Halevi-Rabin Signature Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 91–101. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. ACM Transactions on Information and System Security 3(3), 185 (2000)CrossRefGoogle Scholar
  7. 7.
    Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private Set Intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Daeman, J., Rijmen, V.: AES proposal: Rijndael (1999)Google Scholar
  9. 9.
    De Cristofaro, E., Jarecki, S., Kim, J., Tsudik, G.: Privacy-Preserving Policy-Based Information Transfer. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 164–184. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    De Cristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private Set Intersection Protocols Secure in Malicious Model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Gennaro, R.: Private Communication (2010)Google Scholar
  15. 15.
    Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Gennaro, R., Hazay, C., Sorensen, J.S.: Text Search Protocols with Simulation Based Security. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 332–350. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge Univ. Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC, pp. 218–229 (1987)Google Scholar
  19. 19.
    Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312–331. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of malicious adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 195–212. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Henecka, W., Koegl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: Tool for Automating Secure Two-partY computations. In: ACM CCS (2010)Google Scholar
  23. 23.
    Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Katz, J., Malka, L.: Secure text processing with applications to private dna matching. In: ACM CCS, pp. 485–492 (2010)Google Scholar
  27. 27.
    Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)Google Scholar
  28. 28.
    Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  29. 29.
    Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: FOCS, pp. 120–130 (1999)Google Scholar
  30. 30.
    Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS (2003)Google Scholar
  31. 31.
    Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM Journal on Computing 1254(5), 1–35 (2006)MathSciNetGoogle Scholar
  32. 32.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  33. 33.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Shamir, A.: On the generation of cryptographically strong pseudorandom sequences. ACM Transactions on Computer Systems 1(1), 38–44 (1983)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yao, A.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Giuseppe Ateniese
    • 1
  • Emiliano De Cristofaro
    • 2
  • Gene Tsudik
    • 2
  1. 1.Computer Science DepartmentJohns Hopkins UniversityUSA
  2. 2.Computer Science DepartmentUniversity of CaliforniaIrvine

Personalised recommendations