Linearly Homomorphic Signatures over Binary Fields and New Tools for Lattice-Based Signatures

  • Dan Boneh
  • David Mandell Freeman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6571)

Abstract

We propose a linearly homomorphic signature scheme that authenticates vector subspaces of a given ambient space. Our system has several novel properties not found in previous proposals:

  • It is the first such scheme that authenticates vectors defined over binary fields; previous proposals could only authenticate vectors with large or growing coefficients.

  • It is the first such scheme based on the problem of finding short vectors in integer lattices, and thus enjoys the worst-case security guarantees common to lattice-based cryptosystems.

Our scheme can be used to authenticate linear transformations of signed data, such as those arising when computing mean and Fourier transform or in networks that use network coding. Our construction gives an example of a cryptographic primitive — homomorphic signatures over \(\mathbb{F}_2\) — that can be built using lattice methods, but cannot currently be built using bilinear maps or other traditional algebraic methods based on factoring or discrete log type problems.

Security of our scheme (in the random oracle model) is based on a new hard problem on lattices, called k −SIS, that reduces to standard average-case and worst-case lattice problems. Our formulation of the k −SIS problem adds to the “toolbox” of lattice-based cryptography and may be useful in constructing other lattice-based cryptosystems.

As a second application of the new k −SIS tool, we construct an ordinary signature scheme and prove it k-time unforgeable in the standard model assuming the hardness of the k −SIS problem. Our construction can be viewed as “removing the random oracle” from the signatures of Gentry, Peikert, and Vaikuntanathan at the expense of only allowing a small number of signatures.

Keywords

Lattice-based cryptography homomorphic signatures 

References

  1. 1.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on authenticated data (2010) (manuscript) Google Scholar
  2. 2.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS, pp. 75–86 (2009), http://www.cc.gatech.edu/~cpeikert/pubs/shorter.pdf
  3. 3.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions (2010) (manuscript) Google Scholar
  6. 6.
    Boneh, D., Freeman, D.M.: Homomorphic signatures over binary fields and new tools for lattice-based signatures. Cryptology eprint report 2010/453 (2010), http://eprint.iacr.org/2010/453, Full version of this paper
  7. 7.
    Brzuska, C., Busch, H., Dagdelen, Ö., Fischlin, M., Franz, M., Katzenbeisser, S., Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable signatures for tree-structured data: Definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Chang, E.-C., Lim, C.L., Xu, J.: Short redactable signatures using random trees. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Charles, D., Jain, K., Lauter, K.: Signatures for network coding. International Journal of Information and Coding Theory 1, 3–14 (2009)MATHCrossRefGoogle Scholar
  12. 12.
    Fragouli, C., Soljanin, E.: Network coding fundamentals. Found. Trends Netw. 2, 1–133 (2007)CrossRefGoogle Scholar
  13. 13.
    Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 197–206. ACM, New York (2008)Google Scholar
  15. 15.
    Haber, S., Hatano, Y., Honda, Y., Horne, W., Miyazaki, K., Sander, T., Tezoku, S., Yao, D.: Efficient signature schemes supporting redaction, pseudonymization, and data deidentification. In: ASIACCS 2008, pp. 353–362 (2008)Google Scholar
  16. 16.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: Network and Distributed System Security Symposium (NDSS) (2000)Google Scholar
  18. 18.
    Krohn, M., Freedman, M., Mazières, D.: On-the-fly verification of rateless erasure codes for efficient content distribution. In: Proc. of IEEE Symposium on Security and Privacy, pp. 226–240 (2004)Google Scholar
  19. 19.
    Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th Annual IEEE Symposium on Foundations of Computer Science — FOCS 2004, pp. 372–381 (2004)Google Scholar
  21. 21.
    Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme based on bilinear maps. In: ACM Symposium on Information, Computer and Communications Security — ASIACCS 2006, pp. 343–354 (2006)Google Scholar
  22. 22.
    Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S., Imai, H.: Digitally signed document sanitizing scheme with disclosure condition control. IEICE Transactions on Fundamentals E88-A, 239–246 (2005)CrossRefGoogle Scholar
  23. 23.
    Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Zhao, F., Kalker, T., Médard, M., Han, K.: Signatures for content distribution with network coding. In: Proc. Intl. Symp. Info. Theory (ISIT) (2007)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Dan Boneh
    • 1
  • David Mandell Freeman
    • 1
  1. 1.Stanford UniversityUSA

Personalised recommendations