Towards Mobile Augmented Reality for On-Patient Visualization of Medical Images

  • L. Maier-Hein
  • A. M. Franz
  • M. Fangerau
  • M. Schmidt
  • A. Seitel
  • S. Mersmann
  • T. Kilgus
  • A. Groch
  • K. Yung
  • T. R. dos Santos
  • H.-P. Meinzer
Chapter
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Despite considerable technical and algorithmic developments related to the fields of medical image acquisition and processing in the past decade, the devices used for visualization of medical images have undergone rather minor changes. As anatomical information is typically shown on monitors provided by a radiological work station, the physician has to mentally transfer internal structures shown on the screen to the patient. In this work, we present a new approach to on-patient visualization of 3D medical images, which combines the concept of augmented reality (AR) with an intuitive interaction scheme. The method requires mounting a Time-of-Flight (ToF) camera to a portable display (e.g., a tablet PC). During the visualization process, the pose of the camera and thus the viewing direction of the user is continuously determined with a surface matching algorithm. By moving the device along the body of the patient, the physician gets the impression of being able to look directly into the human body. The concept can be used for intervention planning, anatomy teaching and various other applications that require intuitive visualization of 3D data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Navab N, et al. Action- and workflow-driven augmented reality for computer-aided medical procedures. IEEE Comput Graph Appl. 2007;27(5):10–4.CrossRefGoogle Scholar
  2. 2.
    Sugimoto M, et al. Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery. J Hepatobiliary Pancreat Sci. 2010;17(5):629–36.CrossRefGoogle Scholar
  3. 3.
    Kolb A, et al. Time-of-Flight Sensors in Computer Graphics. In: Proc Eurographics; 2009. p. 119–34.Google Scholar
  4. 4.
    Seitel A, et al. Adaptive bilateral filter for image denoising and its application to in-vitro Time-of-Flight data. Proc SPIE. 2011;(in press).Google Scholar
  5. 5.
    dos Santos TR, et al. Correspondences search for surface-based intra-operative registration. Lect Notes Computer Sci. 2010;6362:660–7.CrossRefGoogle Scholar
  6. 6.
    Maier-Hein L, et al. Accounting for anisotropic noise in fine registration of Timeof-Flight range data with high-resolution surface data. Lect Notes Computer Sci. 2010;6361:251–8.CrossRefGoogle Scholar
  7. 7.
    Tietjen C, et al. GPU-basierte Smart Visibility Techniken für die Planung von Tumor-Operationen. Proc BVM. 2009; p. 272–276.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • L. Maier-Hein
    • 1
  • A. M. Franz
    • 1
  • M. Fangerau
    • 1
  • M. Schmidt
    • 2
  • A. Seitel
    • 1
  • S. Mersmann
    • 1
  • T. Kilgus
    • 1
  • A. Groch
    • 1
  • K. Yung
    • 1
  • T. R. dos Santos
    • 1
  • H.-P. Meinzer
    • 1
  1. 1.Div. of Medical and Biological InformaticsGerman Cancer Research CenterHeidelbergGermany
  2. 2.Heidelberg Collaboratory for Image ProcessingUniversity of HeidelbergHeidelbergGermany

Personalised recommendations