Advertisement

Extracting the Fine Structure of the Left Cardiac Ventricle in 4D CT Data

A Semi-Automatic Segmentation Pipeline
  • Juliane DinseEmail author
  • Daniela Wellein
  • Matthias Pfeifle
  • Silvia Born
  • Thilo Noack
  • Matthias Gutberlet
  • Lukas Lehmkuhl
  • Oliver Burgert
  • Bernhard Preim
Chapter
Part of the Informatik aktuell book series (INFORMAT)

Abstract

We propose a pipeline for the segmentation of the left cardiac ventricle (LV) in 4D CT data based on the random walker (RW) algorithm. A segmentation of the LV allows to extract clinical relevant parameters such as ejection fraction (EF) and volume over time (VoT), supporting diagnostic and therapy planning. The presented pipeline works aside approaches incorporating annotated databases, statistical shape modeling or atlas-based segmentation. We have tested our segmentation approach on six clinical 4D CT datasets including different pathologies and typical artifacts and compared the segmentation results to manually segmented slices. We achieve a minimum sensitivity of 86% and specificity of 96%. The resulting EF and VoT is comparable to known reference values and reflects the present pathologies correctly. Additionally, we tested three different routines for thresholding the RW probability maps. An interview with surgical and radiological experts together with high sensitivity scores indicates the superiority of the fixed threshold selection method – especially in the presence of pathologies. The segmentation is also correct near problematic fine structures such as cardiac valves, papillary muscles and the apex of the heart.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jolly MP. Combining edge, region, and shape information to segment the left ventricle in cardiac MR images. Lect Notes Computer Sci. 2010; p. 482–90.Google Scholar
  2. 2.
    Zheng Y, Barbu A, Georgescu B, et al. Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging. 2008;27(11):1668–81.CrossRefGoogle Scholar
  3. 3.
    Kirisli HA, Schaap M, Klein Sea. Fully automatic cardiac segmentation from 3D CTA data: a multi-atlas based approach. Proc SPIE. 2010;7623:762305–1.CrossRefGoogle Scholar
  4. 4.
    Pfeifle M, Born S, Fischer J, et al. VolV - Eine OpenSource-Plattform für die Medizinische Visualisierung. Proc CURAC. 2007; p. 193–6.Google Scholar
  5. 5.
    Wellein D, Pfeifle M, Althuizes M, et al. A cortex segmentation pipeline. Proc BVM. 2010; p. 271–5.Google Scholar
  6. 6.
    Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell. 1990;12(7):629–39.CrossRefGoogle Scholar
  7. 7.
    Grady L. Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2006;28(11):1768–83.CrossRefGoogle Scholar
  8. 8.
    Grady L, Jolly MP. Weights and topology: a study of the effects of graph construction on 3D image segmentation. Med Image Comput Comput Assist Interv. 2008; p. 153–61.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Juliane Dinse
    • 1
    Email author
  • Daniela Wellein
    • 1
  • Matthias Pfeifle
    • 2
  • Silvia Born
    • 1
  • Thilo Noack
    • 3
  • Matthias Gutberlet
    • 3
  • Lukas Lehmkuhl
    • 3
  • Oliver Burgert
    • 1
  • Bernhard Preim
    • 4
  1. 1.VCM/ICCAS, Universität LeipzigLeipzigGermany
  2. 2.Neurochirurgische Klinik, Universitätsklinikum TübingenTübingenGermany
  3. 3.Herzzentrum LeipzigLeipzigGermany
  4. 4.Institut für Simulation und GraphikOtto-von-Guerike-Universität MagdeburgMagdeburgGermany

Personalised recommendations