Advertisement

Monocular Template-Based Reconstruction of Smooth and Inextensible Surfaces

  • Florent Brunet
  • Richard Hartley
  • Adrien Bartoli
  • Nassir Navab
  • Remy Malgouyres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6494)

Abstract

We present different approaches to reconstructing an inextensible surface from point correspondences between an input image and a template image representing a flat reference shape from a fronto-parallel point of view. We first propose a ‘point-wise’ method, i.e. a method that only retrieves the 3D positions of the point correspondences. This method is formulated as a second-order cone program and it handles inaccuracies in the point measurements. It relies on the fact that the Euclidean distance between two 3D points must be shorter than their geodesic distance (which can easily be computed from the template image). We then present an approach that reconstructs a smooth 3D surface based on Free-Form Deformations. The surface is represented as a smooth map from the template image space to the 3D space. Our idea is to say that the 2D-3D map must be everywhere a local isometry. This induces conditions on the Jacobian matrix of the map which are included in a least-squares minimization problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salzmann, M., Fua, P.: Reconstructing sharply folding surfaces: A convex formulation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1054–1061 (2009)Google Scholar
  2. 2.
    Shen, S., Shi, W., Liu, Y.: Monocular 3-D tracking of inextensible deformable surfaces under L 2-norm. IEEE Transactions on Image Processing 19, 512–521 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Perriollat, M., Hartley, R., Bartoli, A.: Monocular template-based reconstruction of inextensible surfaces. International Journal of Computer Vision (2010)Google Scholar
  4. 4.
    Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2690–2696 (2000)Google Scholar
  5. 5.
    Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., Sayd, P.: Coarse-to-fine low-rank structure-from-motion. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  6. 6.
    Brand, M.: A direct method for 3D factorization of nonrigid motion observed in 2D. In: IEEE Conference on Computer Vision and Pattern Recognition (2005)Google Scholar
  7. 7.
    Del Bue, A.: A factorization approach to structure from motion with shape priors. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  8. 8.
    Olsen, S., Bartoli, A.: Implicit non-rigid structure-from-motion with priors. Journal of Mathematical Imaging and Vision 31, 233–244 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Torresani, L., Hertzmann, A., Bregler, C.: Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 878–892 (2008)CrossRefGoogle Scholar
  10. 10.
    Xiao, J., Chai, J., Kanade, T.: A closed-form solution to non-rigid shape and motion recovery. International Journal of Computer Vision 67, 233–246 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gay-Bellile, V., Perriollat, M., Bartoli, A., Sayd, P.: Image registration by combining thin-plate splines with a 3D morphable model. In: International Conference on Image Processing (2006)Google Scholar
  12. 12.
    Salzmann, M., Hartley, R., Fua, P.: Convex optimization for deformable surface 3-D tracking. In: IEEE International Conference on Computer Vision (2007)Google Scholar
  13. 13.
    Salzmann, M., Urtasun, R., Fua, P.: Local deformation models for monocular 3D shape recovery. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  14. 14.
    Gumerov, N., Zandifar, A., Duraiswami, R., Davis, L.S.: Structure of applicable surfaces from single views. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 482–496. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Prasad, M., Zisserman, A., Fitzgibbon, A.W.: Single view reconstruction of curved surfaces. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1345–1354 (2006)Google Scholar
  16. 16.
    Salzmann, M., Moreno-Noguer, F., Lepetit, V., Fua, P.: Closed-form solution to non-rigid 3D surface registration. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 581–594. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Shen, S., Shi, W., Liu, Y.: Monocular template-based tracking of inextensible deformable surfaces under l 2-norm. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5995, pp. 214–223. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  19. 19.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Zhu, J., Hoi, S., Lyu, M.: Nonrigid shape recovery by gaussian process regression. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  21. 21.
    Dierckx, P.: Curve and Surface Fitting with Splines. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
  22. 22.
    Perriollat, M., Bartoli, A.: A quasi-minimal model for paper-like surfaces. In: Proceedings of the ISPRS International Workshop Towards Benmarking Automated Calibration, Orientation, and Surface Reconstruction from Images (2007)Google Scholar
  23. 23.
    Perriollat, M., Hartley, R., Bartoli, A.: Monocular template-based reconstruction of inextensible surfaces. In: British Machine Vision Conference (2008)Google Scholar
  24. 24.
    Gray, A.: The Gaussian and Mean Curvatures. In: Modern Differential Geometry of Curves and Surfaces with Mathematica, pp. 373–380. CRC Press, Boca Raton (1997)Google Scholar
  25. 25.
    Gay-Bellile, V., Bartoli, A., Sayd, P.: Direct estimation of non-rigid registrations with image-based self-occlusion reasoning. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 87–104 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Florent Brunet
    • 1
    • 2
  • Richard Hartley
    • 3
  • Adrien Bartoli
    • 1
  • Nassir Navab
    • 2
  • Remy Malgouyres
    • 4
  1. 1.ISITUniversité d’Auvergne, Clermont-FerrandFrance
  2. 2.CAMPARTechnische Universtät MünchenGermany
  3. 3.Research School of Information SciencesANU, NICTAAustralia
  4. 4.LIMOS, UMR 6158Clermont-FerrandFrance

Personalised recommendations