Continuous Surface-Point Distributions for 3D Object Pose Estimation and Recognition

  • Renaud Detry
  • Justus Piater
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6494)

Abstract

We present a 3D, probabilistic object-surface model, along with mechanisms for probabilistically integrating unregistered 2.5D views into the model, and for segmenting model instances in cluttered scenes. The object representation is a probabilistic expression of object parts through smooth surface-point distributions obtained by kernel density estimation on 3D point clouds. A multi-part, viewpoint-invariant model is learned incrementally from a set of roughly segmented, unregistered views, by sequentially registering and fusing the views with the incremental model. Registration is conducted by nonparametric inference of maximum-likelihood model parameters, using Metropolis–Hastings MCMC with simulated annealing. The learning of viewpoint-invariant models and the applicability of our method to pose estimation, object detection, and object recognition is demonstrated on 3D-scan data, providing qualitative, quantitative and comparative evaluations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biegelbauer, G., Vincze, M.: Efficient 3D object detection by fitting superquadrics to range image data for robot’s object manipulation. In: IEEE International Conference on Robotics and Automation (2007)Google Scholar
  2. 2.
    Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3D object recognition from range images using local feature histograms. In: Computer Vision and Pattern Recognition, pp. 394–399 (2001)Google Scholar
  3. 3.
    Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques. Comput. Vis. Image Underst. 81, 166–210 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Solina, F., Bajcsy, R.: Recovery of parametric models from range images: The case for superquadrics with global deformations. IEEE Trans. Pattern Anal. Mach. Intell. 12, 131–147 (1990)CrossRefGoogle Scholar
  5. 5.
    Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433–449 (1999)CrossRefGoogle Scholar
  7. 7.
    Mian, A.S., Bennamoun, M., Owens, R.A.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1584–1601 (2006)CrossRefGoogle Scholar
  8. 8.
    Li, X., Guskov, I.: 3D object recognition from range images using pyramid matching. In: International Conference on Computer Vision, pp. 1–6 (2007)Google Scholar
  9. 9.
    Rusu, R., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation (2009)Google Scholar
  10. 10.
    Detry, R., Pugeault, N., Piater, J.: A probabilistic framework for 3D visual object representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1790–1803 (2009)CrossRefGoogle Scholar
  11. 11.
    Li, X., Guskov, I.: Multi-scale features for approximate alignment of point-based surfaces. In: Eurographics Symposium on Geometry Processing (2005)Google Scholar
  12. 12.
    Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. Int. J. Comput. Vision 66, 231–259 (2006)CrossRefGoogle Scholar
  13. 13.
    Collet, A., Berenson, D., Srinivasa, S., Ferguson, D.: Object recognition and full pose registration from a single image for robotic manipulation. In: IEEE International Conference on Robotics and Automation (2009)Google Scholar
  14. 14.
    Liang, P., Todhunter, J.S.: Representation and recognition of surface shapes in range images: A differential geometry approach. Computer Vision, Graphics, and Image Processing 52, 78–109 (1990)CrossRefGoogle Scholar
  15. 15.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, Boca Raton (1986)CrossRefMATHGoogle Scholar
  16. 16.
    Fisher, R.A.: Dispersion on a sphere. Proc. Roy. Soc. London Ser. A (1953)Google Scholar
  17. 17.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Machine Learning 50, 5–43 (2003)CrossRefMATHGoogle Scholar
  19. 19.
    Sudderth, E.B.: Graphical models for visual object recognition and tracking. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2006)Google Scholar
  20. 20.
    Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6, 461–464 (1978)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Bouchard, G., Triggs, B.: Hierarchical part-based visual object categorization. In: Computer Vision and Pattern Recognition, vol. 1, pp. 710–715 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Renaud Detry
    • 1
  • Justus Piater
    • 1
  1. 1.University of LiègeBelgium

Personalised recommendations