Advertisement

Affine Warp Propagation for Fast Simultaneous Modelling and Tracking of Articulated Objects

  • Arnaud Declercq
  • Justus Piater
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6494)

Abstract

We propose a new framework that allows simultaneous modelling and tracking of articulated objects in real time. We introduce a non-probabilistic graphical model and a new type of message that propagates explicit motion information for realignment of feature constellations across frames. These messages are weighted according to the rigidity of the relations between the source and destination features. We also present a method for learning these weights as well as the spatial relations between connected feature points, automatically identifying deformable and rigid object parts. Our method is extremely fast and allows simultaneous learning and tracking of nonrigid models containing hundreds of feature points with negligible computational overhead.

Keywords

Feature Point IEEE Computer Society Belief Propagation Feature Graph Direct Neighbour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sudderth, E.B., Mandel, M.I., Freeman, W.T., Willsky, A.S.: Visual hand tracking using nonparametric belief propagation. In: CVPRW 2004, Washington, DC, USA, vol. 12. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  2. 2.
    Wu, Y., Hua, G., Yu, T.: Tracking articulated body by dynamic markov network. In: ICCV 2003, Washington, DC, USA, p. 1094. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  3. 3.
    Ross, D.A., Tarlow, D., Zemel, R.S.: Unsupervised learning of skeletons from motion. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 560–573. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Yan, J., Pollefeys, M.: Automatic kinematic chain building from feature trajectories of articulated objects. In: CVPR 2006, Washington, DC, USA, pp. 712–719. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  5. 5.
    Ramanan, D., Forsyth, D.A., Barnard, K.: Building models of animals from video. In: PAMI 2006, vol. 28, pp. 1319–1334 (2006)Google Scholar
  6. 6.
    Krahnstoever, N., Yeasin, M., Sharma, R.: Automatic acquisition and initialization of articulated models. Mach. Vision Appl. 14, 218–228 (2003)CrossRefGoogle Scholar
  7. 7.
    Declercq, A., Piater, J.H.: On-line simultaneous learning and tracking of visual feature graphs. In: Online Learning for Classification Workshop, CVPRW 2007 (2007)Google Scholar
  8. 8.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations, pp. 239–269 (2003)Google Scholar
  9. 9.
    Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. In: CVPR 2003, vol. 1, pp. I–605–I–612 (2003)Google Scholar
  10. 10.
    Leordeanu, M., Collins, R.: Unsupervised learning of object features from video sequences. In: CVPR 2005, vol. 1, pp. 1142–1149. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  11. 11.
    Yin, Z., Collins, R.: On-the-fly object modeling while tracking. In: CVPR 2007, pp. 1–8. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  12. 12.
    Drouin, S., Hébert, P., Parizeau, M.: Incremental discovery of object parts in video sequences. Comput. Vis. Image Underst. 110, 60–74 (2008)CrossRefGoogle Scholar
  13. 13.
    Briers, M., Doucet, A., Singh, S.S.: Sequential auxiliary particle belief propagation. In: 8th Int. Conf. on. Information Fusion, 2005, vol. 1, p. 8 (2005)Google Scholar
  14. 14.
    Hua, G., Wu, Y.: Multi-scale visual tracking by sequential belief propagation. In: CVPR 2004, vol. 1, pp. 826–833 (2004)Google Scholar
  15. 15.
    Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. Int. J. Comput. Vision 56, 221–255 (2004)CrossRefGoogle Scholar
  16. 16.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981, pp. 674–679 (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Arnaud Declercq
    • 1
  • Justus Piater
    • 1
  1. 1.Montefiore InstituteUniversity of LiègeBelgium

Personalised recommendations