Advertisement

Adaptive Motion Segmentation Algorithm Based on the Principal Angles Configuration

  • L. Zappella
  • E. Provenzi
  • X. Lladó
  • J. Salvi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6494)

Abstract

Many motion segmentation algorithms based on manifold clustering rely on a accurate rank estimation of the trajectory matrix and on a meaningful affinity measure between the estimated manifolds. While it is known that rank estimation is a difficult task, we also point out the problems that can be induced by an affinity measure that neglects the distribution of the principal angles. In this paper we suggest a new interpretation of the rank of the trajectory matrix and a new affinity measure. The rank estimation is performed by analysing which rank leads to a configuration where small and large angles are best separated. The affinity measure is a new function automatically parametrized so that it is able to adapt to the actual configuration of the principal angles. Our technique has one of lowest misclassification rates on the Hopkins155 database and has good performances also on synthetic sequences with up to 5 motions and variable noise level.

Keywords

Singular Value Decomposition Rank Estimation Motion Segmentation Synthetic Sequence Affinity Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Absil, P.A., Edelman, A., Koev, P.: On the largest principal angle between random subspaces. Linear Algebra and its Applications 414, 288–294 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Björck, A., Golub, G.H.: Numerical methods for computing angles between linear subspaces. Mathematics of Computation 27, 579–594 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: Proc. CVPR, pp. 2790–2797. IEEE, Los Alamitos (2009)Google Scholar
  4. 4.
    Pinho da Silva, N., Costeira, J.P.: Subspace segmentation with outliers: a grassmannian approach to the maximum consensus subspace. In: Proc. CVPR, pp. 1–6. IEEE, Los Alamitos (2008)Google Scholar
  5. 5.
    Pinho da Silva, N., Costeira, J.c.P.: The normalized subspace inclusion: Robust clustering of motion subspaces. In: IEEE I. Conf. Comp. Vis., pp. 1444–1450 (2009)Google Scholar
  6. 6.
    Lauer, F., Schnrr, C.: Spectral clustering of linear subspaces for motion segmentation. In: IEEE I. Conf. Comp. Vis., pp. 678–685 (2009)Google Scholar
  7. 7.
    Rao, S.R., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories. In: Proc. CVPR, pp. 1–8. IEEE, Los Alamitos (2008)Google Scholar
  8. 8.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vision 9, 137–154 (1992)CrossRefGoogle Scholar
  9. 9.
    Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithms. In: Proc. CVPR, pp. 1–8. IEEE, Los Alamitos (2007)Google Scholar
  10. 10.
    Vidal, R., Hartley, R.: Motion segmentation with missing data using powerfactorization and gpca. In: Proc. CVPR IEEE, vol. 2, pp. 310–316 (2004)Google Scholar
  11. 11.
    Yan, J., Pollefeys, M.: A factorization-based approach for articulated nonrigid shape, motion and kinematic chain recovery from video. IEEE Trans. Pattern Anal. Machine Intell. 30, 865–877 (2008)CrossRefGoogle Scholar
  12. 12.
    Zappella, L., Lladö, X., Provenzi, E., Salvi, J.: Enhanced Local Subspace Affinity for Feature-Based Motion Segmentation. Pattern Recognition 44, 454–470 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • L. Zappella
    • 1
  • E. Provenzi
    • 2
  • X. Lladó
    • 1
  • J. Salvi
    • 1
  1. 1.Institut d’Informàtica i AplicacionsUniversitat de GironaGironaSpain
  2. 2.Departamento de Tecnologías de la Información y las ComunicacionesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations