Towards Full 3D Helmholtz Stereovision Algorithms

  • Amaël Delaunoy
  • Emmanuel Prados
  • Peter N. Belhumeur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6492)


Helmholtz stereovision methods are limited to binocular stereovision or depth maps reconstruction. In this paper, we extend these methods to recover the full 3D shape of the objects of a scene from multiview Helmholtz stereopsis. Thus, we are able to reconstruct the complete three-dimensional shape of objects made of any arbitrary and unknown bidirectional reflectance distribution function. Unlike previous methods, this can be achieved using a full surface representation model. In particular occlusions (self occlusions as well as cast shadows) are easier to handle in the surface optimization process. More precisely, we use a triangular mesh representation which allows to naturally specify relationships between the geometry of a point of the scene and its surface normal. We show how to implement the presented approach using a coherent gradient descent flow. Results and benefits are illustrated on various examples.


Triangle Mesh Bidirectional Reflectance Distribution Function Virtual View Visual Hull Photometric Stereo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goesele, M., Curless, B., Seitz, S.M.: Multi-view stereo revisited. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 02, pp. 2402–2409 (2006)Google Scholar
  2. 2.
    Jin, H., Cremers, D., Yezzi, A.J., Soatto, S.: Shedding light on stereoscopic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 01, pp. 36–42 (2004)Google Scholar
  3. 3.
    Jin, H., Cremers, D., Wang, D., Prados, E., Yezzi, A., Soatto, S.: 3-D reconstruction of shaded objects from multiple images under unknown illumination. International Journal of Computer Vision 76 (2008)Google Scholar
  4. 4.
    Hernandez, C., Vogiatzis, G., Cipolla, R.: Multiview photometric stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 548–554 (2008)CrossRefGoogle Scholar
  5. 5.
    Mallick, S.P., Zickler, T., Kriegman, D.J., Belhumeur, P.N.: Beyond lambert: Reconstructing specular surfaces using color. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 619–626 (2005)Google Scholar
  6. 6.
    Zickler, T., Mallick, S.P., Kriegman, D.J., Belhumeur, P.: Color subspaces as photometric invariants. International Journal of Computer Vision (2008)Google Scholar
  7. 7.
    Pons, J.P., Keriven, R., Faugeras, O.: Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. The International Journal of Computer Vision 72, 179–193 (2007)CrossRefGoogle Scholar
  8. 8.
    Vu, H., Keriven, R., Labatut, P., Pons, J.P.: Towards high-resolution large-scale multi-view stereo. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  9. 9.
    Jin, H., Soatto, S., Yezzi, A.J.: Multi-view stereo beyond lambert. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 171 (2003)Google Scholar
  10. 10.
    Yu, T., Xu, N., Ahuja, N.: Recovering shape and reflectance model of non-lambertian objects from multiple views. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 226–233 (2004)Google Scholar
  11. 11.
    Yoon, K.J., Prados, E., Sturm, P.: Joint estimation of shape and reflectance using multiple images with known illumination conditions. International Journal of Computer Vision (2009) (to appear)Google Scholar
  12. 12.
    Hertzmann, A., Seitz, S.: Example-based photometric stereo: Shape reconstruction with general, varying brdfs. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1254–1264 (2005)CrossRefGoogle Scholar
  13. 13.
    Zickler, T., Belhumeur, P.N., Kriegman, D.J.: Helmholtz stereopsis: Exploiting reciprocity for surface reconstruction. International Journal of Computer Vision 49, 215–227 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Zickler, T., Ho, J., Kriegman, D., Ponce, J., Belhumeur, P.: Binocular helmholtz stereopsis. In: Proceedings Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1411–1417 (2003)Google Scholar
  15. 15.
    Guillemaut, J.Y., Drbohlav, O., Sara, R., Illingworth, J.: Helmholtz stereopsis on rough and strongly textured surfaces. In: 3DPVT 2004: Proceedings of the 3D Data Processing, Visualization, and Transmission, 2nd International Symposium, Washington, DC, USA, pp. 10–17. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  16. 16.
    Zickler, T.: Reciprocal image features for uncalibrated helmholtz stereopsis. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1801–1808 (2006)Google Scholar
  17. 17.
    Tu, P., Mendon, P.R.S.: Surface reconstruction via helmholtz reciprocity with a single image pair. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 541 (2003)Google Scholar
  18. 18.
    Pons, J.P., Boissonnat, J.D.: Delaunay deformable models: Topology-adaptive meshes based on the restricted delaunay triangulation. In: IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA (2007)Google Scholar
  19. 19.
    Zaharescu, A., Boyer, E., Horaud, R.: Transformesh: a topology-adaptive mesh-based approach to surface evolution. In: Proceedings Asian Conference on Computer Vision, Tokyo, Japan (2007)Google Scholar
  20. 20.
    Eckstein, I., Pons, J.P., Tong, Y., Kuo, C.C.J., Desbrun, M.: Generalized surface flows for mesh processing. In: Eurographics Symposium on Geometry Processing (2007)Google Scholar
  21. 21.
    Delaunoy, A., Prados, E., Gargallo, P., Pons, J.P., Sturm, P.: Minimizing the multi-view stereo reprojection error for triangular surface meshes. In: British Machine and Vision Conference, Leeds, UK (2008)Google Scholar
  22. 22.
    Debreuve, É., Gastaud, M., Barlaud, M., Aubert, G.: Using the shape gradient for active contour segmentation: from the continuous to the discrete formulation. Journal of Mathematical Imaging and Vision (2007)Google Scholar
  23. 23.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds (2002)Google Scholar
  24. 24.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 519–528 (2006)Google Scholar
  25. 25.
    Gargallo, P.: Contributions to the Bayesian approach to Multi-view Stereo. PhD thesis, Institut National Polytechique de Grenoble, France (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Amaël Delaunoy
    • 1
  • Emmanuel Prados
    • 1
  • Peter N. Belhumeur
    • 2
  1. 1.INRIA Grenoble / LJKFrance
  2. 2.Columbia UniversityUSA

Personalised recommendations