Advertisement

Learning Video Manifold for Segmenting Crowd Events and Abnormality Detection

  • Myo Thida
  • How-Lung Eng
  • Monekosso Dorothy
  • Paolo Remagnino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6492)

Abstract

This paper addresses the problem of analyzing video events in crowded scenes. A novel manifold learning method is proposed to achieve visualization and modeling of video events in a low dimensional space. In the proposed approach, a video is considered as a trajectory of frames in a low-dimensional space. This low-dimensional representation of a video preserves the spatio-temporal property of a video as well as the characteristic of the video. Different tasks of video content analysis such as visualization, video event segmentation and abnormality detection are achieved by analyzing these video trajectories based on the Hausdorff distance similarity measure. We evaluate our proposed method on the state-of-the-art public data-sets containing different crowd events. Qualitative and quantitative results show the promising performance of the proposed method.

Keywords

Video Sequence Video Frame Spectral Cluster Manifold Learning Crowd Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PETS 2009 benchmark data (2009), http://www.cvg.rdg.ac.uk/PETS2009
  2. 2.
    Unusual crowd activity dataset, http://mha.cs.umn.edu
  3. 3.
    Wang, X., Tieu, K., Grimson, E.: Learning semantic scene models by trajectory analysis. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 110–123. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Hu, W., Xiao, X., Fu, Z., Dan, X., Tan, T., Steve, M.: A System for Learning Statistical Motion Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1450–1464 (2006)CrossRefGoogle Scholar
  5. 5.
    Johnson, N., Hogg, D.: Learning the Distribution of Object Trajectories for Event Recognition. Image and Vision Computing 14, 583–592 (1996)CrossRefGoogle Scholar
  6. 6.
    Andrade, E., Fisher, R.: Simulation of Crowd problems for Computer Vision. In: Proceedings of 19th International Conference on Pattern Recognition (ICPR 2005), vol. 3, pp. 71–80 (2005)Google Scholar
  7. 7.
    Andrade, E., Fisher, R., Blunsden, S.: Modelling Crowd Scenes for Event Detection. In: Proceedings of 19th International Conference on Pattern Recognition (ICPR 2006), vol. 1, pp. 175–178 (2006)Google Scholar
  8. 8.
    Andrade, E., Blunsden, S., Fisher, R.: Performance Analysis of Event Detection Models in Crowded Scenes. In: Proceedings of Workshop on ‘Towards Robust Visual Surveillance Techniques and Systems’ at Visual Information Engineering, pp. 427–432 (2006)Google Scholar
  9. 9.
    Andrade, E., Fisher, R., Blunsden, S.: Detection of Emergency Events in Crowded Scenes. In: Proceedings of IEE International Symposium on Imaging for Crime Detection and Prevention (ICDP 2006), pp. 528–533 (2006)Google Scholar
  10. 10.
    Hu, M., Ali, S., Shah, M.: Detecting Global Motion Patterns in Complex Videos. In: Proceedings of International Conference on Pattern Recognition (ICPR 2008), Tempa, Florida, pp. 1–5. IEEE, Los Alamitos (2008)Google Scholar
  11. 11.
    Min Hu, S.A., Shah, M.: Learning Motion Patterns in Crowded Scenes Using Motion Flow Field. In: Proceedings of International Conference on Pattern Recognition (ICPR 2008), Tempa, Florida, pp. 1–5. IEEE, Los Alamitos (2008)CrossRefGoogle Scholar
  12. 12.
    Mehran, R., Oyama, A., Shah, M.: Abnormal Crowd Behavior Detection using Social Force Model. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR 2009), Maimi Beach, Florida, pp. 935–942. IEEE, Los Alamitos (2009)CrossRefGoogle Scholar
  13. 13.
    Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR 2010), San Francisco, CA, USA. IEEE, Los Alamitos (2010)Google Scholar
  14. 14.
    Pless, R.: Image spaces and video trajectories: Using isomap to explore video sequences. In: Proceedings of IEEE International Conferecne on Computer Vision, vol. 2, pp. 1433–1440. IEEE, Los Alamitos (2003)CrossRefGoogle Scholar
  15. 15.
    Tziakos, I., Cavallaro, A., Xu, L.Q.: Video event segmentation and visualisation in non-linear subspace. Pattern Recognition Letter 30, 123–131 (2009)CrossRefGoogle Scholar
  16. 16.
    Wu, Y., Chan, K.L., Wang, L.: Face recognition based on discriminative manifold learning. In: Proceedings of IEEE International Conferecne on Image Processing, vol. 4, pp. 171–174 (2004)Google Scholar
  17. 17.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 328–340 (2005)CrossRefGoogle Scholar
  18. 18.
    Wang, R., Shan, S., Chen, X., Gao, W.: Manifold-manifold distance with application to face recognition based on image set. In: Proceedings of IEEE International Conferecne on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  19. 19.
    Elgammal, A., Lee, C.S.: Inferring 3d body pose from silhouettes using activity manifold learning. In: Proceedings of IEEE International Conferecne on Computer Vision and Pattern Recognition, vol. 2, pp. 681–688 (2004)Google Scholar
  20. 20.
    Chang, Y., Hu, C., Turk, M.: Probabilistic expression analysis on manifolds. In: Proceedings of IEEE International Conferecne on Computer Vision and Pattern Recognition, vol. 2, pp. 520–527 (2004)Google Scholar
  21. 21.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local svm approach. In: Proceedings of IEEE International Conferecne on Pattern Recognition, vol. 3, pp. 32–36. IEEE, Los Alamitos (2004)Google Scholar
  22. 22.
    Wang, L., Suter, D.: Analyzing human movements from silhouettes using manifold learning. In: Proceedings of IEEE International Conference on Video and Signal Based Surveillance, pp. 1–7 (2006)Google Scholar
  23. 23.
    Wang, L., Suter, D.: Learning and matching of dynamic shape manifolds for human action recognition. IEEE Transactions on Image Processing 16, 1646–1661 (2007)CrossRefGoogle Scholar
  24. 24.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Sciene 290, 2319–2323 (2000)CrossRefGoogle Scholar
  26. 26.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
  28. 28.
    Garate, C., Bilinski, P., Bremond, F.: Crowd Event Recognition Using HOG Tracker. In: Proceedings of Eleventh International Workshoop on Performance Evaluation of Tracking and Surveillance (Winter-PETS 2009). IEEE, Los Alamitos (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Myo Thida
    • 1
    • 2
  • How-Lung Eng
    • 1
  • Monekosso Dorothy
    • 2
  • Paolo Remagnino
    • 2
  1. 1.Institute for Infocomm ResearchSingapore
  2. 2.Digital Image Research Centre Faculty of Computing Information Systems and MathematicsKingston UniversityUK

Personalised recommendations