Advertisement

An Efficient RANSAC for 3D Object Recognition in Noisy and Occluded Scenes

  • Chavdar Papazov
  • Darius Burschka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6492)

Abstract

In this paper, we present an efficient algorithm for 3D object recognition in presence of clutter and occlusions in noisy, sparse and unsegmented range data. The method uses a robust geometric descriptor, a hashing technique and an efficient RANSAC-like sampling strategy. We assume that each object is represented by a model consisting of a set of points with corresponding surface normals. Our method recognizes multiple model instances and estimates their position and orientation in the scene. The algorithm scales well with the number of models and its main procedure runs in linear time in the number of scene points. Moreover, the approach is conceptually simple and easy to implement. Tests on a variety of real data sets show that the proposed method performs well on noisy and cluttered scenes in which only small parts of the objects are visible.

Keywords

Object Recognition Recognition Rate Hash Table Range Image Spin Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lamdan, Y., Wolfson, H.: Geometric Hashing: A General And Efficient Model-based Recognition Scheme. In: ICCV, pp. 238–249 (1988)Google Scholar
  2. 2.
    Ballard, D.H.: Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern Recognition 13, 111–122 (1981)CrossRefzbMATHGoogle Scholar
  3. 3.
    Mian, A.S., Bennamoun, M., Owens, R.A.: Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes. IEEE TPAMI 28, 1584–1601 (2006)CrossRefGoogle Scholar
  4. 4.
    Johnson, A., Hebert, M.: Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes. IEEE TPAMI 21, 433–449 (1999)CrossRefGoogle Scholar
  5. 5.
    Hetzel, G., Leibe, B., Levi, P., Schiele, B.: 3D Object Recognition from Range Images Using Local Feature Histograms. In: CVPR, pp. 394–399 (2001)Google Scholar
  6. 6.
    Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing Objects in Range Data Using Regional Point Descriptors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Gelfand, N., Mitra, N., Guibas, L., Pottmann, H.: Robust Global Registration. In: Eurographics Symposium on Geometry Processing, pp. 197–206 (2005)Google Scholar
  8. 8.
    Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface Feature Detection and Description with Applications to Mesh Matching. In: CVPR, pp. 373–380 (2009)Google Scholar
  9. 9.
    Sun, J., Ovsjanikov, M., Guibas, L.J.: A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. Comput. Graph. Forum 28, 1383–1392 (2009)CrossRefGoogle Scholar
  10. 10.
    Matei, B., Shan, Y., Sawhney, H.S., Tan, Y., Kumar, R., Huber, D.F., Hebert, M.: Rapid Object Indexing Using Locality Sensitive Hashing and Joint 3D-Signature Space Estimation. IEEE TPAMI 28, 1111–1126 (2006)CrossRefGoogle Scholar
  11. 11.
    Winkelbach, S., Molkenstruck, S., Wahl, F.M.: Low-Cost Laser Range Scanner and Fast Surface Registration Approach. In: Proceedings of 28th DAGM Symposium Pattern Recognition, pp. 718–728 (2006)Google Scholar
  12. 12.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)CrossRefGoogle Scholar
  13. 13.
    Wang, H., Suter, D.: Robust Adaptive-Scale Parametric Model Estimation for Computer Vision. IEEE TPAMI 26, 1459–1474 (2004)CrossRefGoogle Scholar
  14. 14.
    Wang, H., Mirota, D., Hager, G.D.: A Generalized Kernel Consensus-Based Robust Estimator. IEEE TPAMI 32, 178–184 (2010)CrossRefGoogle Scholar
  15. 15.
    Chen, C.S., Hung, Y.P., Cheng, J.B.: RANSAC-Based DARCES: A New Approach to Fast Automatic Registration of Partially Overlapping Range Images. IEEE TPAMI 21, 1229–1234 (1999)CrossRefGoogle Scholar
  16. 16.
    Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for Point-Cloud Shape Detection. Comput. Graph. Forum 26, 214–226 (2007)CrossRefGoogle Scholar
  17. 17.
    Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points Congruent Sets for Robust Pairwise Surface Registration. ACM Trans. Graph. 27 (2008)Google Scholar
  18. 18.
    Shan, Y., Matei, B., Sawhney, H.S., Kumar, R., Huber, D.F., Hebert, M.: Linear Model Hashing and Batch RANSAC for Rapid and Accurate Object Recognition. In: CVPR, pp. 121–128 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chavdar Papazov
    • 1
  • Darius Burschka
    • 1
  1. 1.Technische Universität München (TUM)Germany

Personalised recommendations