Colour Dynamic Photometric Stereo for Textured Surfaces

  • Zsolt Jankó
  • Amaël Delaunoy
  • Emmanuel Prados
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6493)


In this paper we present a novel method to apply photometric stereo on textured dynamic surfaces. We aim at exploiting the high accuracy of photometric stereo and reconstruct local surface orientation from illumination changes. The main difficulty derives from the fact that photometric stereo requires varying illumination while the object remains still, which makes it quite impractical to use for dynamic surfaces. Using coloured lights gives a clear solution to this problem; however, the system of equations is still ill-posed and it is ambiguous whether the change of an observed surface colour is due to the change of the surface gradient or of the surface reflectance.

In order to separate surface orientation from reflectance, our method tracks texture changes over time and exploits surface reflectance’s temporal constancy. This additional constraint allows us to reformulate the problem as an energy functional minimisation, solved by a standard quasi-Newton method. Our method is tested both on real and synthetic data, quantitatively evaluated and compared to a state-of-the-art method.


Texture Surface Synthetic Dataset Dynamic Surface Photometric Stereo Temporal Smoothness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aganj, E., Pons, J.P., Ségonne, F., Keriven, R.: Spatio-temporal shape from silhouette using four-dimensional Delaunay meshing. In: Proc. ICCV 2007 (2007)Google Scholar
  2. 2.
    Courchay, J., Pons, J.-P., Monasse, P., Keriven, R.: Dense and accurate spatio-temporal multi-view stereovision. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5995, pp. 11–22. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Furukawa, Y., Ponce, J.: Dense 3D motion capture from synchronized video streams. In: Proc. CVPR 2008 (2008)Google Scholar
  4. 4.
    Pons, J.P., Boissonnat, J.D.: Delaunay deformable models: Topology-adaptive meshes based on the restricted Delaunay triangulation. In: Proc. CVPR 2007 (2007)Google Scholar
  5. 5.
    Starck, J., Hilton, A.: Surface capture for performance based animation. IEEE Computer Graphics and Applications 27, 21–31 (2007)CrossRefGoogle Scholar
  6. 6.
    Vedula, S., Baker, S., Kanade, T.: Image-based spatio-temporal modeling and view interpolation of dynamic events. ACM Trans. on Graphics 24, 240–261 (2005)CrossRefGoogle Scholar
  7. 7.
    Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. ACM Transactions on Graphics 27 (2008)Google Scholar
  8. 8.
    Woodham, R.J.: Photometric stereo: A reflectance map technique for determining surface orientation from image intensity. In: Image Understanding Systems and Industrial Applications, Proc. SPIE, vol. 155, pp. 136–143 (1978)Google Scholar
  9. 9.
    Smith, M.L., Smith, L.N.: Dynamic photometric stereo–a new technique for moving surface analysis. Image and Vision Computing 23, 841–852 (2005)CrossRefGoogle Scholar
  10. 10.
    Timo, P., Detlef, P., Pertti, K. (inventors): Arrangement and method for inspection of surface quality. European Patent Application, EP 1 030 173 A1 (2000)Google Scholar
  11. 11.
    Vlasic, D., Peers, P., Baran, I., Debevec, P., Popović, J., Rusinkiewicz, S., Matusik, W.: Dynamic shape capture using multi-view photometric stereo. In: Proc. SIGGRAPH Asia 2009, pp. 1–11 (2009)Google Scholar
  12. 12.
    Drew, M.S.: Shape from color. Technical report, School of Computing Science, Simon Fraser University, Vancouver, B.C. (1992)Google Scholar
  13. 13.
    Hernandez, C., Vogiatzis, G., Brostow, G., Stenger, B., Cipolla, R.: Non-rigid photometric stereo with colored lights. In: Proc. ICCV 2007, pp. 1–8 (2007)Google Scholar
  14. 14.
    Kontsevich, L., Petrov, A., Vergelskaya, I.: Reconstruction of shape from shading in color images. J. Opt. Soc. Am. A 11, 1047–1052 (1994)CrossRefGoogle Scholar
  15. 15.
    Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the removal of shadows from images. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 59–68 (2006)CrossRefGoogle Scholar
  16. 16.
    Bochkanov, S.: ALGLIB,
  17. 17.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Sand, P., Teller, S.: Particle video: Long-range motion estimation using point trajectories. In: Proc. CVPR 2006, pp. 2195–2202 (2006)Google Scholar
  19. 19.
  20. 20.
    Ma, W.C., Hawkins, T., Peers, P., Chabert, C.F., Weiss, M., Debevec, P.: Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In: Proc. EGSR 2007 (2007)Google Scholar
  21. 21.
    Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., Debevec, P.: Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Trans. Graph. 24, 756–764 (2005)CrossRefGoogle Scholar
  22. 22.
    INRIA: GrImage Platform,
  23. 23.
    Kovesi, P.: Shapelets correlated with surface normals produce surface. In: Proc. ICCV 2005, pp. 994–1001 (2005)Google Scholar
  24. 24.
    Kovesi, P.: MATLAB and octave functions for computer vision and image processing,

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zsolt Jankó
    • 1
    • 2
  • Amaël Delaunoy
    • 1
  • Emmanuel Prados
    • 1
  1. 1.INRIA Rhône-AlpesMontbonnotFrance
  2. 2.Computer and Automation Research InstituteBudapestHungary

Personalised recommendations