Generic Object Class Detection Using Boosted Configurations of Oriented Edges

  • Oscar Danielsson
  • Stefan Carlsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6493)

Abstract

In this paper we introduce a new representation for shape-based object class detection. This representation is based on very sparse and slightly flexible configurations of oriented edges. An ensemble of such configurations is learnt in a boosting framework. Each edge configuration can capture some local or global shape property of the target class and the representation is thus not limited to representing and detecting visual classes that have distinctive local structures. The representation is also able to handle significant intra-class variation. The representation allows for very efficient detection and can be learnt automatically from weakly labelled training images of the target class. The main drawback of the method is that, since its inductive bias is rather weak, it needs a comparatively large training set. We evaluate on a standard database [1] and when using a slightly extended training set, our method outperforms state of the art [2] on four out of five classes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferrari, V., Tuytelaars, T., Van Gool, L.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Maji, S., Malik, J.: Object detection using a max-margin. In: Proc. of the IEEE Computer Vision and Pattern Recognition (2009)Google Scholar
  3. 3.
    Gavrila, D.M.: A bayesian, exemplar-based approach to hierarchical shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (2007)Google Scholar
  4. 4.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)CrossRefGoogle Scholar
  5. 5.
    Ferrari, V., Jurie, F., Schmid, C.: Accurate object detection with deformable shape models learnt from images. In: Proc. of the IEEE Computer Vision and Pattern Recognition (2007)Google Scholar
  6. 6.
    Thuresson, J., Carlsson, S.: Finding object categories in cluttered images using minimal shape prototypes. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 1122–1129. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Carlsson, S.: Order structure, correspondence, and shape based categories. In: Forsyth, D., Mundy, J.L., Di Gesú, V., Cipolla, R. (eds.) Shape, Contour, and Grouping 1999. LNCS, vol. 1681, p. 58. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection. In: Proc. of the International Conference of Computer Vision (2005)Google Scholar
  9. 9.
    Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14, 771–780 (1999)Google Scholar
  11. 11.
    Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  12. 12.
    Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time euclidean distance transform algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 17, 529–533 (1995)CrossRefGoogle Scholar
  13. 13.
    Fleuret, F., Geman, D.: Coarse-to-fine face detection. International Journal of Computer Vision 4, 85–107 (2001)CrossRefMATHGoogle Scholar
  14. 14.
    Wu, Y.N., Si, Z., Fleming, C., Zhu, S.C.: Deformable template as active basis. In: Proc. of the International Conference on Computer Vision (2007)Google Scholar
  15. 15.
    Danielsson, O., Carlsson, S., Sullivan, J.: Automatic learning and extraction of multi-local features. In: Proc. of the International Conference on Computer Vision (2009)Google Scholar
  16. 16.
    Viola, P.A., Jones, M.J.: Fast and robust classification using asymmetric adaboost and a detector cascade. In: Proc. of Neural Information Processing Systems, pp. 1311–1318 (2001)Google Scholar
  17. 17.
    Fayyad, U.M.: On the Induction of Decision Trees for Multiple Concept Learning. PhD thesis, The University of Michigan (1991)Google Scholar
  18. 18.
    Ravishankar, S., Jain, A., Mittal, A.: Multi-stage contour based detection of deformable objects. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 483–496. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Zhu, Q., Wang, L., Wu, Y., Shi, J.: Contour context selection for object detection: A set-to-set contour matching approach. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 774–787. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Schindler, K., Suter, D.: Object detection by global contour shape. Pattern Recognition 41, 3736–3748 (2008)CrossRefMATHGoogle Scholar
  21. 21.
    Stark, M., Goesele, M., Schiele, B.: A shape-based object class model for knowledge transfer. In: Proc. of International Conference on Computer Vision (2009)Google Scholar
  22. 22.
    Ommer, B., Malik, J.: Multi-scale object detection by clustering lines. In: Proc. of International Conference on Computer Vision (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oscar Danielsson
    • 1
  • Stefan Carlsson
    • 1
  1. 1.School of Computer Science and CommunicationsRoyal Inst. of TechnologyStockholmSweden

Personalised recommendations