Human Tracking by Multiple Kernel Boosting with Locality Affinity Constraints

  • Fan Yang
  • Huchuan Lu
  • Yen-Wei Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6495)

Abstract

In this paper, we incorporate the concept of Multiple Kernel Learning (MKL) algorithm, which is used in object categorization, into human tracking field. For efficiency, we devise an algorithm called Multiple Kernel Boosting (MKB), instead of directly adopting MKL. MKB aims to find an optimal combination of many single kernel SVMs focusing on different features and kernels by boosting technique. Besides, we apply Locality Affinity Constraints (LAC) to each selected SVM. LAC is computed from the distribution of support vectors of respective SVM, recording the underlying locality of training data. An update scheme to reselect good SVMs, adjust their weights and recalculate LAC is also included. Experiments on standard and our own testing sequences show that our MKB tracking outperforms some other state-of-the-art algorithms in handling various conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1631–1643 (2005)Google Scholar
  2. 2.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: CVPR, vol. 1, pp. 260–267 (2006)Google Scholar
  3. 3.
    Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Avidan, S.: Support vector tracking. PAMI 26(8), 1064–1072 (2004)CrossRefGoogle Scholar
  5. 5.
    Avidan, S.: Ensemble tracking. In: CVPR, vol. 2, pp. 494–501 (2005)Google Scholar
  6. 6.
    Tian, M., Zhang, W., Liu, F.: On-line ensemble svm for robust object tracking. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 355–364. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR, pp. 983–990 (2009)Google Scholar
  8. 8.
    Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: SimpleMKL. Journal of Machine Learning Research 9, 2491–2521 (2008)MathSciNetMATHGoogle Scholar
  9. 9.
    Sonnenburg, S., Ratsch, G., Schafer, C., Scholkopf, B.: Large scale multiple kernel learning. Journal of Machine Learning Research 7, 1531–1565 (2006)MathSciNetMATHGoogle Scholar
  10. 10.
    Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning, conic duality, and the SMO algorithm. In: ICML (2004)Google Scholar
  11. 11.
    Varma, M., Ray, D.: Learning the discriminative power-invariance trade-off. In: ICCV (2007)Google Scholar
  12. 12.
    Kumar, A., Sminchisescu, C.: Support kernel machines for object recognition. In: ICCV (2007)Google Scholar
  13. 13.
    Gonen, M., Alpaydin, E.: Localized multiple kernel learning. In: ICML, pp. 352–359 (2008)Google Scholar
  14. 14.
    Christoudias, M., Urtasun, R., Darrell, T.: Bayesian localized multiple kernel learning. Technical Report UCB/EECS-2009-96, EECS Department, University of California, Berkeley (2009)Google Scholar
  15. 15.
    Cao, L., Luo, J., Liang, F., Huang, T.: Heterogeneous Feature Machines for Visual Recognition. In: ICCV, pp. 1095–1102 (2009)Google Scholar
  16. 16.
    Yang, J., Li, Y., Tian, Y., Duan, L., Gao, W.: Group-Sensitive Multiple Kernel Learning for Object Categorization. In: ICCV (2009)Google Scholar
  17. 17.
    Gehler, P., Nowozin, S.: On feature combination for multiclass object classification. In: ICCV 2009, pp. 221–228 (2009)Google Scholar
  18. 18.
    Siddiquie, B., Vitaladevuni, S., Davis, L.: Combining multiple kernels for efficient image classification. In: WACV 2009, pp. 1–8 (2009)Google Scholar
  19. 19.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893 (2005)Google Scholar
  20. 20.
    Lowe, D.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)Google Scholar
  21. 21.
    Nummiaro, K., Koller-Meier, E., Van Gool, L.: Object tracking with an adaptive color-based particle filter. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 353–360. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fan Yang
    • 1
  • Huchuan Lu
    • 1
  • Yen-Wei Chen
    • 1
    • 2
  1. 1.School of Information and Communication EngineeringDalian University of TechnologyDalianChina
  2. 2.College of Information Science and EngineeringRitsumeikan UniversityKusatsuJapan

Personalised recommendations