Fast Recovery of Weakly Textured Surfaces from Monocular Image Sequences

  • Oliver Ruepp
  • Darius Burschka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6495)


We present a method for vision-based recovery of three-dimensional structures through simultaneous model reconstruction and camera position tracking from monocular images. Our approach does not rely on robust feature detecting schemes (such as SIFT, KLT etc.), but works directly on intensity values in the captured images. Thus, it is well-suited for reconstruction of surfaces that exhibit only minimal texture due to partial homogeneity of the surfaces. Our method is based on a well-known optimization technique, which has been implemented in an efficient yet flexible way, in order to achieve high performance while ensuring extensibility.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newcombe, R., Davison, A.: Live dense reconstruction with a single moving camera. In: IEEE Conference on Computer Vision and Pattern Recognition CVPR (2010)Google Scholar
  2. 2.
    Pan, Q., Reitmayr, G., Drummond, T.: ProFORMA: Probabilistic Feature-based On-line Rapid Model Acquisition. In: Proc. 20th British Machine Vision Conference (BMVC), London (2009)Google Scholar
  3. 3.
    Paalanen, P., Kyrki, V., Kamarainen, J.K.: Towards Monocular On-Line 3D Reconstruction. In: Workshop on Vision in Action: Efficient strategies for cognitive agents in complex environments, Marseille France, Markus Vincze and Danica Kragic and Darius Burschka and Antonis Argyros (2008)Google Scholar
  4. 4.
    Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1994), pp. 593–600 (1994)Google Scholar
  5. 5.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)Google Scholar
  6. 6.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004) ISBN: 0521540518CrossRefMATHGoogle Scholar
  8. 8.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment - a modern synthesis. In: Proceedings of the International Workshop on Vision Algorithms, ICCV 1999, pp. 298–372. Springer, London (2000)Google Scholar
  9. 9.
    Engels, C., Stewénius, H., Nistér, D.: Bundle adjustment rules. In: Photogrammetric Computer Vision (PCV), ISPRS (2006)Google Scholar
  10. 10.
    Fua, P.: Using model-driven bundle-adjustment to model heads from raw video sequences. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 46–53 (1999)Google Scholar
  11. 11.
    Shan, Y., Liu, Z., Zhang, Z.: Model-based bundle adjustment with application to face modeling. In: Proceedings of Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 644–651 (2001)Google Scholar
  12. 12.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (2000)MATHGoogle Scholar
  13. 13.
    Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edn. Other Titles in Applied Mathematics, vol. 105. SIAM, Philadelphia (2008)CrossRefMATHGoogle Scholar
  14. 14.
    Naumann, U.: Optimal jacobian accumulation is np-complete. Math. Program. 112, 427–441 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press and McGraw-Hill Book Company (2001)Google Scholar
  16. 16.
    Griewank, A., Naumann, U.: Accumulating jacobians as chained sparse matrix products. Math. Program. 95, 555–571 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Griewank, A., Juedes, D., Utke, J.: Algorithm 755. ADOL-C: A package for the automatic differentiation of algorithms written in C/C++ 22, 131–167 (1996)MATHGoogle Scholar
  18. 18.
    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathmatics II, 164–168 (1944)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics 11, 431–441 (1963)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision (darpa). In: Proceedings of the 1981 DARPA Image Understanding Workshop, pp. 121–130 (1981)Google Scholar
  21. 21.
    Davis, T.A., Hager, W.W.: Dynamic supernodes in sparse cholesky update/downdate and triangular solves. ACM Trans. Math. Softw. 35, 1–23 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oliver Ruepp
    • 1
  • Darius Burschka
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations