From Static Textual Display of Patents to Graphical Interactions

  • Steffen Koch
  • Harald Bosch
Part of the The Information Retrieval Series book series (INRE, volume 29)


Increasingly, visualisation is becoming a crucial part of patent search and analysis tools. Due to the benefits for accessing and presenting large amounts of data quickly, it is highly relevant for common tasks in the intellectual property domain. Graphical representations become an even more powerful instrument by adding interactive methods allowing for the user-guided-change of perspectives and the exploration of the presented information. A close integration of interactive visualisation into search and analysis cycles can leverage seamless search and analysis environments, as proposed for similar tasks in the relatively new research field of visual analytics. This chapter proposes such a visual analytics approach for the intellectual property domain. One possible way to accomplish this integration is shown on the basis of the research software prototype PatViz. The chapter contains a discussion of the benefits as well as the difficulties arising through the realisation of such a system as well as an outlook on how the methods can be exploited for collaboration tasks.


Patent Document Interactive Visualisation Patent Analysis Visual Perspective Patent Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tufte ER (1986) The visual display of quantitative information. Graphics Press, Cheshire Google Scholar
  2. 2.
    Ware C (2000) Information visualization: perception for design. Morgan Kaufmann, New York Google Scholar
  3. 3.
    Card SK, Mackinlay JD, Shneiderman B (1999) Readings in information visualization: using vision to think. Morgan Kaufmann, New York Google Scholar
  4. 4.
    Thomas JJ, Cook KA (2005) Illuminating the path: the research and development agenda for visual analytics. National Visualization and Analytics Center Google Scholar
  5. 5.
    Keim D, Kohlhammer J, Ellis G, Mansmann F (eds) (2010) Mastering the information age: solving problems with visual analytics. Eurographic Association, Goslar Google Scholar
  6. 6.
    Chang R, Lee A, Ghoniem M, Kosara R, Ribarsky W, Yang J, Suma E, Ziemkiewicz C, Kern D, Sudjianto A (2008) Scalable and interactive visual analysis of financial wire transactions for fraud detection. In: Information visualization, 2008 (7) Google Scholar
  7. 7.
    Stasko J, Görg C, Liu Z (2008) Jigsaw: supporting investigative analysis through interactive visualization. In: Information visualization, 2008 (7) Google Scholar
  8. 8.
    Ware C (2004) Information visualization: perception for design, 2nd edn. Morgan Kaufman, San Mateo Google Scholar
  9. 9.
    Börner K, Chen C (2002) Visual interfaces to digital libraries. Lecture notes in computer science, vol. 2539. Springer, Berlin CrossRefzbMATHGoogle Scholar
  10. 10.
    Börner K, Chen C, Boyack K (2003) Visualizing knowledge domains. Annu Rev Inf Sci Technol 37 Google Scholar
  11. 11.
    Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proc IEEE symp visual languages Google Scholar
  12. 12.
    Sears A, Jacko JA (2007) The human-computer interaction handbook: fundamentals, evolving technologies and emerging applications, 2nd edn. CRC Press, New York CrossRefGoogle Scholar
  13. 13.
    Trippe AJ (2002) Patinformatics: identifying haystacks from space. Searcher 10(9) Google Scholar
  14. 14.
    Trippe AJ (2003) Patinformatics: tasks to tools. World Pat Inf 25(3):211–221. doi: 10.1016/S0172-2190(03)00079-6 CrossRefGoogle Scholar
  15. 15.
    Yang YY, Akers L, Klose T, Barcelon Yang C (2008) Text mining and visualization tools—impressions of emerging capabilities. World Pat Inf 30 Google Scholar
  16. 16.
    Moehrle MG, Walter L, Bergmann I, Bobe S, Skrzipale S (2010) Patinformatics as a business process: a guideline through patent research tasks and tools. World Pat Inf 32(4):291–299. doi: 10.1016/j.wpi.2009.11.003 CrossRefGoogle Scholar
  17. 17.
    Card S, Pirolli P (2005) Sensemaking processes of intelligence analysts and possible leverage points as identified through cognitive task analysis. In: International conference on intelligence analysis Google Scholar
  18. 18.
    Chen Y, Yang J, Ribarsky W (2009) Toward effective insight management in visual analytics systems. Pac Vis. doi: 10.1109/PACIFICVIS.2009.4906837 Google Scholar
  19. 19.
    Koch S, Bosch H, Giereth M, Ertl T (2009) Iterative integration of visual insights during scalable patent search and analysis. IEEE Trans Vis Comput Graph. doi: 10.1109/TVCG.2010.85 Google Scholar
  20. 20.
    Wanner L, Baeza-Yates R, Brügmann S et al. (2008) Towards content-oriented patent document processing. World Pat Inf 30(1) Google Scholar
  21. 21.
    Inselberg A, Dimsdale B (1990) Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: IEEE visualization Google Scholar
  22. 22.
    Roberts J (2007) State of the art: coordinated & multiple views in exploratory visualization. In: Proc 5th int’l conf coordinated and multiple views in exploratory visualization Google Scholar
  23. 23.
    Elmqvist N, Stasko J, Tsigas P (2008) DataMeadow: a visual canvas for analysis of large-scale multivariate data. In: Information visualization Google Scholar
  24. 24.
    Spoerri A (1994) InfoCrystal. In: Proc SIGCHI conf human factors in computing systems. ACM, New York Google Scholar
  25. 25.
    Fishkin K, Stone MC (1995) Enhanced dynamic queries via movable filters. In: Proc SIGCHI conf human factors in computing systems. ACM Press, New York Google Scholar
  26. 26.
    Stolte C, Tang D, Hanrahan P (2002) Polaris: a system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans Vis Comput Graph Google Scholar
  27. 27.
    Hearst MA (2009) Search user interfaces. Cambridge University Press, New York Google Scholar
  28. 28.
    Wirth N (1973) Systematic programming: an introduction. Prentice Hall PTR, Englewood Cliffs Google Scholar
  29. 29.
    Ahlberg C, Williamson C, Shneiderman B (1992) Dynamic queries for information exploration: an implementation and evaluation. In: Proc ACM CHI’92 conf human factors in computing systems Google Scholar
  30. 30.
    Richter Lipford H, Stukes F, Dou W, Hawkins ME, Chang R (2010) Helping users recall their reasoning process. In: Proc IEEE symp visual analytics science and technology, pp 187–194. doi: 10.1109/VAST.2010.5653598 CrossRefGoogle Scholar
  31. 31.
    Callahan SP, Freire J, Santos E, Scheidegger CE, Silva CT, Vo HT (2006) VisTrails: visualization meets data management. In: Proc ACM SIGMOD int’l conf management of data Google Scholar
  32. 32.
    Czerwinski MP, Smith G, Regan T, Meyers B, Robertson GG, Starkweather G (2003) Toward characterizing the productivity benefits of very large displays. In: Interact Google Scholar
  33. 33.
    Wei B, Silva CT, Koutsofios E, Krishnan S, North S (2000) Visualization research with large displays. IEEE Comput Graph Appl Google Scholar
  34. 34.
    Czerwinski M, Baudisch P, Meyers B, Robbins D, Smith G, Tan D (2005) The large-display user experience. IEEE Comput Graph Appl Google Scholar
  35. 35.
    Crossno PJ, Dunlavy DM, Shead TM (2009) LSAView: a tool for visual exploration of latent semantic modeling. In: IEEE symposium on visual analytics science and technology Google Scholar
  36. 36.
    Paulovich FV, Minghim R (2008) HiPP: a novel hierarchical point placement strategy and its application to the exploration of document collections. IEEE Trans Vis Comput Graph Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Steffen Koch
    • 1
  • Harald Bosch
    • 1
  1. 1.Institute for Interactive Systems and VisualizationUniversität StuttgartStuttgartGermany

Personalised recommendations