Parameterized Complexity of k-Anonymity: Hardness and Tractability

  • Paola Bonizzoni
  • Gianluca Della Vedova
  • Riccardo Dondi
  • Yuri Pirola
Conference paper

DOI: 10.1007/978-3-642-19222-7_25

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)
Cite this paper as:
Bonizzoni P., Della Vedova G., Dondi R., Pirola Y. (2011) Parameterized Complexity of k-Anonymity: Hardness and Tractability. In: Iliopoulos C.S., Smyth W.F. (eds) Combinatorial Algorithms. IWOCA 2010. Lecture Notes in Computer Science, vol 6460. Springer, Berlin, Heidelberg

Abstract

The problem of publishing personal data without giving up privacy is becoming increasingly important. A precise formalization that has been recently proposed is the k-anonymity, where the rows of a table are partitioned in clusters of size at least k and all rows in a cluster become the same tuple after the suppression of some entries. The natural optimization problem, where the goal is to minimize the number of suppressed entries, is hard even when the stored values are over a binary alphabet or the table consists of a bounded number of columns. In this paper we study how the complexity of the problem is influenced by different parameters. First we show that the problem is W[1]-hard when parameterized by the value of the solution (and k). Then we exhibit a fixed-parameter algorithm when the problem is parameterized by the number of columns and the number of different values in any column.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paola Bonizzoni
    • 1
  • Gianluca Della Vedova
    • 2
  • Riccardo Dondi
    • 3
  • Yuri Pirola
    • 1
  1. 1.DISCoUniv. Milano-BicoccaItaly
  2. 2.Dip. StatisticaUniv. Milano-BicoccaItaly
  3. 3.Dipartimento di Scienze dei Linguaggi, della Comunicazione e degli Studi CulturaliUniversità degli Studi di BergamoItaly

Personalised recommendations