The Complexity Status of Problems Related to Sparsest Cuts

  • Paul Bonsma
  • Hajo Broersma
  • Viresh Patel
  • Artem Pyatkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)

Abstract

Given an undirected graph G = (V,E) with a capacity function \(w : E \longrightarrow \mathbb{Z}^+\) on the edges, the sparsest cut problem is to find a vertex subset S ⊂ V minimizing ∑ e ∈ E(S,V ∖ S)w(e)/(|S||V ∖ S|). This problem is NP-hard. The proof can be found in [16]. In the case of unit capacities (i. e. if w(e) = 1 for every e ∈ E) the problem is to minimize |E(S,V ∖ S)|/(|S||V ∖ S|) over all subsets S ⊂ V. While this variant of the sparsest cut problem is often assumed to be NP-hard, this note contains the first proof of this fact. We also prove that the problem is polynomially solvable for graphs of bounded treewidth.

Keywords

NP-hardness sparsest cut densest cut MSSC bounded treewidth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Journal of Machine Learning 75, 245–248 (2009)CrossRefGoogle Scholar
  2. 2.
    Aloise, D., Hansen, P.: On the complexity of minimum sum-of-squares clustering. Cahiers du GERAD, G–2007–50 (2007), http://www.gerad.ca
  3. 3.
    Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability Results for Sparsest Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling. In: FOCS, pp. 329–337 (2007)Google Scholar
  4. 4.
    Arora, S., Hazan, E., Kale, S.: \(O(\sqrt{\log n})\) Approximation to SPARSEST CUT in \(\tilde{O}(n^2)\) Time. SIAM J. Comput. 39(5), 1748–1771 (2010)CrossRefMATHGoogle Scholar
  5. 5.
    Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and graph partitioning. In: STOC, pp. 222–231 (2004)Google Scholar
  6. 6.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)CrossRefMATHGoogle Scholar
  7. 7.
    Bodlaender, H.L.: Treewidth: algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Bonsma, P.: Sparsest cuts and concurrent flows in product graphs. Discrete Applied Mathematics 136(2-3), 173–182 (2004)CrossRefMATHGoogle Scholar
  9. 9.
    Bonsma, P.: Linear time algorithms for finding sparsest cuts in various graph classes. In: CS 2006, Prague. Electronic Notes in Discrete Mathematics, vol. 28, pp. 265–272 (2007)Google Scholar
  10. 10.
    Chlamtac, E., Krauthgamer, R., Raghavendra, P.: Approximating sparsest cuts in graphs of bounded treewidth. arXiv:1006.3970v2 [cs.Ds] (June 23, 2010)Google Scholar
  11. 11.
    Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B, pp. 193–242. Elsevier, Amsterdam (1990)Google Scholar
  12. 12.
    Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Journal of Machine Learning 56, 9–33 (2004)CrossRefMATHGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)MATHGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some Simplified NP-Complete Graph Problems. Theoretical Computer Science 1, 237–267 (1976)CrossRefMATHGoogle Scholar
  15. 15.
    Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)CrossRefMATHGoogle Scholar
  16. 16.
    Matula, D.W., Shahrokhi, F.: Sparsest cuts and bottlenecks in graphs. Discrete Applied Mathematics 27, 113–123 (1990)CrossRefMATHGoogle Scholar
  17. 17.
    Moret, B., Shapiro, H.: Algorithms from P to NP. Benjamin/Cummings (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paul Bonsma
    • 1
  • Hajo Broersma
    • 2
  • Viresh Patel
    • 2
  • Artem Pyatkin
    • 2
  1. 1.Computer Science DepartmentHumboldt Universität zu BerlinBerlinGermany
  2. 2.School of Engineering and Computing Sciences, Science LaboratoriesDurham UniversityDurhamU.K.

Personalised recommendations