Micropolar Shells as Two-dimensional Generalized Continua Models

  • Holm Altenbach
  • Victor A. Eremeyev
  • Leonid P. Lebedev
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 7)


Using the direct approach the basic relations of the nonlinear micropolar shell theory are considered. Within the framework of this theory the shell can be considered as a deformable surface with attached three unit orthogonal vectors, so-called directors. In other words the micropolar shell is a two-dimensional (2D) Cosserat continuum or micropolar continuum. Each point of the micropolar shell has three translational and three rotational degrees of freedom as in the rigid body dynamics. In this theory the rotations are kinematically independent on translations. The interaction between of any two parts of the shell is described by the forces and moments only. So at the shell boundary six boundary conditions have to be given. In contrast to Kirchhoff-Love or Reissner’s models of shells the drilling moment acting on the shell surface can be taken into account. In the paper we derive the equilibrium equations of the shell theory using the principle of virtual work. The strain measures are introduced on the base of the principle of frame indifference. The boundary-value static and dynamic problems are formulated in Lagrangian and Eulerian coordinates. In addition, some variational principles are presented. For the general constitutive equations we formulate some constitutive restrictions, for example, the Coleman-Noll inequality, the Hadamard inequality, etc. Finally, we discuss the equilibrium of shells made of materials undergoing phase transformations, such as martensitic transformations, and formulate the compatibility conditions on the phase interface.


Micropolar shells 6-parametric theory of shells Variational principles Constitutive inequalities Coleman-Noll inequality Hadamard inequality Phase transformations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeyaratne R, Knowles J.K (2006) Evolution of Phase Transitions. A Continuum Theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Agrawal A, Steigmann D.J (2008) Coexistent fluid-phase equilibria in biomembranes with bending elasticity. Journal of Elasticity 93(1):63–80CrossRefGoogle Scholar
  3. 3.
    Altenbach H, Eremeyev V.A, Lebedev L.P, Rendón L.A (2010) Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech 80(3):217–227CrossRefGoogle Scholar
  4. 4.
    Altenbach H, Zhilin P.A (1988) A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki (Advances in Mechanics) 11(4):107–148Google Scholar
  5. 5.
    Altenbach J, Altenbach H, Eremeyev V.A (2010) On generalized Cosserat-type theories of plates and shells. A short review and bibliography. Arch. Appl. Mech. 80(1):73–92CrossRefGoogle Scholar
  6. 6.
    Berezovski A, Engelbrecht J, Maugin G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, New Jersey et al. (2008)Google Scholar
  7. 7.
    Bhattacharya K (2003) Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Bhattacharya K, James R.D (1999) A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 36:531–576CrossRefGoogle Scholar
  9. 9.
    Boulbitch A.A (1999) Equations of heterophase equilibrium of a biomembrane. Archive of Applied Mechanics 69(2):83–93CrossRefGoogle Scholar
  10. 10.
    Chróścielewski J, Makowski J, Pietraszkiewicz W (2004) Statics and Dynamics of Multyfolded Shells. Nonlinear Theory and Finite Elelement Method. Wydawnictwo IPPT PAN, WarszawaGoogle Scholar
  11. 11.
    Chróścielewski J, Pietraszkiewicz W, Witkowski W (2010) On shear correction factors in the non-linear theory of elastic shells. Int. J. Solids Struct. 47(25–26):3537–3545CrossRefGoogle Scholar
  12. 12.
    Chróścielewski J, Witkowski W (2010) On some constitutive equations for micropolar plates. ZAMM 90(1):53–64CrossRefGoogle Scholar
  13. 13.
    Cosserat, E., Cosserat, F.: Théorie des Corps Déformables. Hermann Editeurs, Paris (1909) (Reprint, Gabay, Paris, 2008)Google Scholar
  14. 14.
    Courant R, Hilbert D (1991) Methods of Mathematical Physics, Vol.~1. Wiley, New YorkGoogle Scholar
  15. 15.
    Eremeyev V.A (2005) Acceleration waves in micropolar elastic media. Doklady Physics 50(4):204–206CrossRefGoogle Scholar
  16. 16.
    Eremeyev V.A (2005) Nonlinear micropolar shells: theory and applications. In: Pietraszkiewicz W, Szymczak C (eds.) Shell Structures: Theory and Applications. Taylor & Francis, London pp. 11–18Google Scholar
  17. 17.
    Eremeyev V.A, Pietraszkiewicz W (2004) The non-linear theory of elastic shells with phase transitions. J. Elasticity 74(1):67–86CrossRefGoogle Scholar
  18. 18.
    Eremeyev V.A, Pietraszkiewicz W (2006) Local symmetry group in the general theory of elastic shells. J. Elasticity 85(2):125–152CrossRefGoogle Scholar
  19. 19.
    Eremeyev V.A, Pietraszkiewicz W (2009) Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1):41–67Google Scholar
  20. 20.
    Eremeyev V.A, Pietraszkiewicz W (2010) On tension of a two-phase elastic tube. In: W. Pietraszkiewicz, I. Kreja (eds.) Shell Structures. Theory and Applications. Vol. 2.. CRC Press, Boca Raton pp. 63–66Google Scholar
  21. 21.
    Eremeyev V.A, Zubov L.M (1994) On the stability of elastic bodies with couple stresses (in Russian). Izv. RAN. Mekanika Tvedogo Tela (Mechanics of Solids) (3):181–190Google Scholar
  22. 22.
    Eremeyev V.A, Zubov L.M (2007) On constitutive inequalities in nonlinear theory of elastic shells. ZAMM 87(2):94–101CrossRefGoogle Scholar
  23. 23.
    Eremeyev V.A, Zubov L.M (2008) Mechanics of Elastic Shells (in Russian). Nauka, MoscowGoogle Scholar
  24. 24.
    Ericksen J.L, Truesdell C (1958) Exact theory of stress and strain in rods and shells. Arch. Rat. Mech. Analysis 1(1):295–323CrossRefGoogle Scholar
  25. 25.
    Eringen A.C (1999) Microcontinuum Field Theory. I. Foundations and Solids. Springer, New YorkGoogle Scholar
  26. 26.
    Eringen A.C (2001) Microcontinuum Field Theory. II. Fluent Media. Springer, New YorkGoogle Scholar
  27. 27.
    Fichera G (1972) Existence theorems in elasticity. In: S. Flügge (ed.) Handbuch der Physik, vol. VIa/2. Springer, Berlin pp. 347–389Google Scholar
  28. 28.
    Gibbs, J.W.: On the equilibrium of heterogeneous substances. In: The Collected Works of J. Willard Gibbs. pp. 53–353. Longmans, Green & Co, New York (1928)Google Scholar
  29. 29.
    Grinfeld,M (1991) Thermodynamics Methods in the Theory of Heterogeneous Systems. Longman, HarlowGoogle Scholar
  30. 30.
    Gurtin M.E (2000) Configurational Forces as Basic Concepts of Continuum Physics. Springer-Verlag, BerlinGoogle Scholar
  31. 31.
    He Y.J, Sun Q (2009) Scaling relationship on macroscopic helical domains in NiTi tubes. Int. J. Solids Struct. 46(24):4242–4251CrossRefGoogle Scholar
  32. 32.
    He Y.J, Sun Q (2010) Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates. Int. J. Mech. Sci. 52(2):198–211CrossRefGoogle Scholar
  33. 33.
    He Y.J, Sun Q (2010) Rate-dependent domain spacing in a stretched NiTi strip. Int. J. Solids Struct. 47(20):2775–2783CrossRefGoogle Scholar
  34. 34.
    James R.D, Rizzoni R (2000) Pressurized shape memory thin films. J. Elasticity 59:399–436CrossRefGoogle Scholar
  35. 35.
    Kienzler R, Herrman G (2000) Mechanics in Material Space with Applications to Defect and Fracure Mechanics. Springer-Verlag, BerlinGoogle Scholar
  36. 36.
    Lebedev L.P, Cloud M.J, Eremeyev V.A (2010) Tensor Analysis with Applications in Mechanics. World Scientific, New JerseyCrossRefGoogle Scholar
  37. 37.
    Li Z.Q, Sun Q (2002) The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. Int. J. Plasticity 18(11):1481–1498CrossRefGoogle Scholar
  38. 38.
    Libai A, Simmonds J.G (1983) Nonlinear elastic shell theory. Adv. Appl. Mech. 23:271–371CrossRefGoogle Scholar
  39. 39.
    Libai A, Simmonds J.G (1998) The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. 40.
    Lions J.L, Magenes E (1968) Problèmes aux limites non homogènes et applications. Dunod, ParisGoogle Scholar
  41. 41.
    Lurie A.I (2001) Analytical Mechanics. Foundations of Engineering Mechanics. Springer, BerlinGoogle Scholar
  42. 42.
    Lurie A.I (2005) Theory of Elasticity. Foundations of Engineering Mechanics. Springer, BerlinGoogle Scholar
  43. 43.
    Maugin G.A (1993) Material Inhomogeneities in Elasticity. Chapman Hall, LondonGoogle Scholar
  44. 44.
    Maugin G.A (2011) A historical perspective of generalized continuum mechanics. In: H. Altenbach, V.I. Erofeev, G.A. Maugin (eds.) Mechanics of Generalized Continua. From the Micromechanical Basics to Engineering Applications. Springer, BerlinGoogle Scholar
  45. 45.
    Maugin, G.A., Metrikine, A.V. : (eds.): Mechanics of Generalized Continua: One hundred years after the Cosserats. Springer, New York (2010)Google Scholar
  46. 46.
    Miyazaki, S., Fu, Y.Q., Huang, W.M. (eds.): Thin Film Shape Memory Alloys: Fundamentals and Device Applications. Cambridge University Press, Cambridge (2009)Google Scholar
  47. 47.
    Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon-Press, Oxford et al. (1986)Google Scholar
  48. 48.
    Pietraszkiewicz W (1979) Consistent second approximation to the elastic strain energy of a shell. ZAMM 59:206–208Google Scholar
  49. 49.
    Pietraszkiewicz, W.: Finite Rotations and Langrangian Description in the Non-linear Theory of Shells. Polish Sci. Publ, Warszawa-Poznań (1979)Google Scholar
  50. 50.
    Pietraszkiewicz W (1989) Geometrically nonlinear theories of thin elastic shells. Uspekhi Mechaniki (Advances in Mechanics) 12(1):51–130Google Scholar
  51. 51.
    Pietraszkiewicz W (2001) Teorie nieliniowe powłok. In: C. Woźniak (ed.) Mechanika spre\(\dot{\hbox{z}}\)ystych płyt i powłok. PWN, Warszawa pp. 424–497Google Scholar
  52. 52.
    Pietraszkiewicz W, Eremeyev V.A (2009) On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46:774–787CrossRefGoogle Scholar
  53. 53.
    Pietraszkiewicz W, Eremeyev V.A (2009) On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. Int. J. Solids Struct. 46(11–12):2477–2480CrossRefGoogle Scholar
  54. 54.
    Pietraszkiewicz W, Eremeyev V.A, Konopińska V (2007) Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM 87(2):150–159CrossRefGoogle Scholar
  55. 55.
    Reissner E (1974) Linear and nonlinear theory of shells. In: Y.C. Fung, E.E. Sechler (eds.) Thin Shell Structures. Prentice-Hall, Englewood Cliffs, NJ pp. 29–44Google Scholar
  56. 56.
    Truesdell C (1984) Rational Thermodynamics, 2nd edn. Springer, New YorkGoogle Scholar
  57. 57.
    Truesdell C (1991) A First Course in Rational Continuum Mechanics, 2nd edn. Academic Press, New YorkGoogle Scholar
  58. 58.
    Truesdell C, Noll, W (1965) The nonlinear field theories of mechanics. In: S. Flügge (ed.) Handbuch der Physik, Vol. III/3. Springer, Berlin pp. 1–602Google Scholar
  59. 59.
    Zhilin P.A (1976) Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12:635 – 648CrossRefGoogle Scholar
  60. 60.
    Zubov L.M (1997) Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Holm Altenbach
    • 1
  • Victor A. Eremeyev
    • 1
    • 2
  • Leonid P. Lebedev
    • 3
  1. 1.Martin-Luther-Universität Halle-WittenbergHalleGermany
  2. 2.South Scientific Center of RASci & South Federal UniversityRostov on DonRussia
  3. 3.Universidad Nacional de ColombiaBogota D.C.Colombia

Personalised recommendations