On Some Logic Games in Their Philosophical Context

  • Tero Tulenheimo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6505)


In the present paper Hintikka’s game-theoretical semantics and the dialogical logic of Lorenzen and Lorenz are discussed and compared from the viewpoint of their underlying philosophical meaning theories. The question of whether the proposed meaning theories can be claimed to suffer from circularity is taken up. The relations of the two frameworks to verificationist and anti-realist ideas are considered. Finally, van Heijenoort’s concept of ‘logic as calculus’ generalized by Hintikka to the idea of ‘language as calculus’ will be reformulated as a view we label ‘anti-universalism.’ We discuss briefly the fourfold division of foundational views obtained by relating a distinction between ‘universalism’ and ‘anti-universalism’ to the distinction between ‘realism’ and ‘anti-realism.’


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Games and Full Abstraction for PCF. Information and Computation 163(2), 409–470 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Auxier, R.E., Hahn, L.E. (eds.): The Philosophy of Jaakko Hintikka. Library of Living Philosophers, vol. 30. Open Court, Chicago (2006)MATHGoogle Scholar
  3. 3.
    Beall, J.C., Restall, G.: Logical Pluralism. Oxford University Press, Oxford (2006)Google Scholar
  4. 4.
    van Benthem, J.: Logic, Rational Agency, and Intelligent Interaction. ILLC Prepublication Series, PP-2008-6 (2008)Google Scholar
  5. 5.
    Clark, R.: Games, Quantification and Discourse Structure. In: [36], pp. 139–150 (2009)Google Scholar
  6. 6.
    Dummett, M.: The Logical Basis of Metaphysics. Harvard University Press, Cambridge (1991)Google Scholar
  7. 7.
    Dummett, M.: Thought and Reality. Clarendon Press, Oxford (2006)CrossRefGoogle Scholar
  8. 8.
    Felscher, W.: Dialogues, Strategies, and Intuitionistic Provability. Annals of Pure and Applied Logic 28, 217–254 (1985)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Girard, J.-Y.: Locus Solum. Mathematical Structures in Computer Science 11, 301–506 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    van Heijenoort, J.: Logic as Calculus and Logic as Language. Synthese 17, 324–330 (1967)CrossRefMATHGoogle Scholar
  11. 11.
    Hintikka, J.: Language-Games for Quantifiers. In: Rescher, N. (ed.) Studies in Logical Theory, pp. 46–72. Basil Blackwell, Oxford (1968)Google Scholar
  12. 12.
    Hintikka, J.: Logic, Language-Games, and Information: Kantian Themes in the Philosophy of Logic. Clarendon Press, Oxford (1973)MATHGoogle Scholar
  13. 13.
    Hintikka, J.: Game-Theoretical Semantics as a Synthesis of Verificationist and Truth-Conditional Meaning Theories. In: LePore, E. (ed.) New Directions in Semantics, pp. 235–258. Academic Press, London (1987)Google Scholar
  14. 14.
    Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press, Cambridge (1996)CrossRefMATHGoogle Scholar
  15. 15.
    Hintikka, J.: Lingua Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of Twentieth-Century Philosophy. Jaakko Hintikka: Selected Papers, vol. 2. Kluwer, Dordrecht (1997)CrossRefGoogle Scholar
  16. 16.
    Hintikka, J.: Intellectual Autobiography. In: [2], pp. 3–84 (2006)Google Scholar
  17. 17.
    Hintikka, J.: Reply to Wilfrid Hodges. In: [2], pp. 535–540 (2006)Google Scholar
  18. 18.
    Hintikka, J., Hintikka, M.B.: Investigating Wittgenstein. Basil Blackwell, Oxford (1986)MATHGoogle Scholar
  19. 19.
    Hintikka, J., Kulas, J.: The Game of Language: Studies in Game-Theoretical Semantics and Its Applications. Reidel, Dordrecht (1983)CrossRefGoogle Scholar
  20. 20.
    Hintikka, J., Kulas, J.: Anaphora and Definite Descriptions: Two Applications of Game-Theoretical Semantics. Reidel, Dordrecht (1985)CrossRefGoogle Scholar
  21. 21.
    Hintikka, J., Sandu, G.: On the Methodology of Linguistics: A Case Study. Basic Blackwell, Oxford (1991)Google Scholar
  22. 22.
    Hintikka, J., Sandu, G.: Game-Theoretical Semantics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 361–410. Elsevier, Amsterdam (1997)CrossRefGoogle Scholar
  23. 23.
    Hodges, W.: Elementary Predicate Logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 1, pp. 1–131. Reidel, Dordrecht (1983)Google Scholar
  24. 24.
    Hodges, W.: Logic and Games. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy (2006) (Summer 2006 Edition), http://plato.stanford.edu/archives/sum2006/entries/logic-games/
  25. 25.
    Hyland, J.M.E., Ong, L.: On Full Abstraction for PCF I, II, and III. Information and Computation 163(1), 285–408 (2000)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Japaridze, G.: Introduction to Computability Logic. Annals of Pure and Applied Logic 123, 1–99 (2003)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kamlah, W., Lorenzen, P.: Logische Propädeutik oder Vorschule des vernünftigen Redens. Bibliographisches Institut, Mannheim (1967)Google Scholar
  28. 28.
    Lorenz, K.: Dialogspiele als semantische Grundlage von Logikkalkülen. Archiv für mathematische Logik und Grundlagenforschung 11, 32–55, 73–100 (1967)CrossRefMATHGoogle Scholar
  29. 29.
    Lorenzen, P.: Logik und Agon. In: Atti del, X.I.I. (ed.) Congresso Internazionale di Filosofia (Venezia, 1958), pp. 187–194. Sansoni, Firenze (1960)Google Scholar
  30. 30.
    Lorenzen, P.: Ein dialogisches Konstruktivitätskriterium. In: Infinitistic Methods, pp. 193–200. Pergamon Press, New York (1961)Google Scholar
  31. 31.
    Lorenzen, P.: Metamathematik. Bibliographisches Institut, Mannheim (1962)MATHGoogle Scholar
  32. 32.
    Lorenzen, P.: Methodisches Denken. Suhrkamp, Frankfurt am Main (1968)Google Scholar
  33. 33.
    Lorenzen, P.: Normative Logic and Ethics. Bibliographisches Institut, Mannheim (1969)MATHGoogle Scholar
  34. 34.
    Lorenzen, P.: Die dialogische Begründung von Logikkalkülen. In: Gethmann, C.F. (ed.) Theorie des wissenschaftlichen Argumentierens, pp. 43–69. Suhrkamp, Frankfurt am Main (1980)Google Scholar
  35. 35.
    Lorenzen, P., Lorenz, K.: Dialogische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt (1978)MATHGoogle Scholar
  36. 36.
    Majer, O., Pietarinen, A.-V., Tulenheimo, T. (eds.): Games: Unifying Logic, Language, and Philosophy. Springer, Heidelberg (2009)MATHGoogle Scholar
  37. 37.
    Marion, M.: Why Play Logical Games? In: [36], pp. 3–26 (2009)Google Scholar
  38. 38.
    Peacock, C.: The Theory of Meaning in Analytical Philosophy. In: Fløistad, G. (ed.) Contemporary Philosophy, pp. 35–56. Nijhoff, The Hague (1981)Google Scholar
  39. 39.
    Pietarinen, A.-V.: Most Even Budged Yet: Some Cases for Game-Theoretic Semantics in Natural Language. Theoretical Linguistics 27, 20–54 (2001)CrossRefGoogle Scholar
  40. 40.
    Prawitz, D.: Meaning and Proofs: On the Conflict Between Classical and Intuitionistic Logic. Theoria 43, 2–40 (1977)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Rahman, S., Carnielli, W.: The Dialogical Approach to Paraconsistency. Synthese 125, 201–232 (2000)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Rahman, S., Keiff, L.: On How to Be a Dialogician. In: Vanderveken, D. (ed.) Logic, Thought and Action, pp. 359–408. Springer, New York (2005)CrossRefGoogle Scholar
  43. 43.
    Rahman, S., Rückert, H.: Dialogische Logik und Relevanz. Universität des Saarlandes, memo no. 27 (December 1998)Google Scholar
  44. 44.
    Rahman, S., Rückert, H.: Eine neue dialogische Semantik für lineare Logik. In: [49], pp. 141–172 (2007)Google Scholar
  45. 45.
    Rahman, S., Rückert, H., Fischmann, M.: On Dialogues and Ontology. The Dialogical Approach to Free Logic. Logique et Analyse 160, 357–374 (1997)MathSciNetMATHGoogle Scholar
  46. 46.
    Rahman, S., Tulenheimo, T.: From Games to Dialogues and Back: Towards a General Frame for Validity. In: [36], pp. 153–208 (2009)Google Scholar
  47. 47.
    Ranta, A.: Propositions as Games as Types. Synthese 76, 377–395 (1988)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Rückert, H.: Why Dialogical Logic? In: Wansing, H. (ed.) Essays on Non-Classical Logic, pp. 15–30. World Scientific, London (2001); reprinted in [49], pp. 15–30Google Scholar
  49. 49.
    Rückert, H.: Dialogues as a Dynamic Framework for Logic. Ph.D. thesis. Department of Philosophy, Universiteit Leiden (2007)Google Scholar
  50. 50.
    Saarinen, E.: Dialogue Semantics versus Game-Theoretical Semantics. In: Proceedings of the Biennial Meeting of the Philosophy of Science Association, pp. 41–59 (1978)Google Scholar
  51. 51.
    Sundholm, G.: Proof-Theoretical Semantics and Fregean Identity Criteria for Propositions. The Monist 77, 294–314 (1994)CrossRefGoogle Scholar
  52. 52.
    Tulenheimo, T.: Comparative Remarks on Dialogical Logic and Game-Theoretical Semantics. In: Bour, P.E., Rebuschi, M., Rollet, L. (eds.) Construction. Festschrift for Gerhard Heinzmann, pp. 417–430. College Publications, London (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tero Tulenheimo
    • 1
  1. 1.STL-CNRSUniversity of Lille 3France

Personalised recommendations