Clock Synchronization with Deterministic Accuracy Guarantee

  • Ryo Sugihara
  • Rajesh K. Gupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6567)


Accuracy is one of the most important performance metrics in clock synchronization. While state-of-the-art synchronization protocols achieve μsec-order average accuracy, they usually do not focus on the worst case accuracy and do not have any deterministic guarantees. This lack of accuracy guarantee makes it hard for sensor networks to be incorporated into larger systems that require more reliability than e.g., typical environmental monitoring applications do. In this paper, we present a clock synchronization algorithm with deterministic accuracy guarantee. A key observation is that the variability of oscillation frequency is much smaller in a single crystal than between different crystals. Our algorithm leverages this to achieve much tighter accuracy guarantee compared to the interval-based synchronization methods mostly proposed in the literature of distributed systems. We designed an algorithm to solve a geometric problem involving tangents to convex polygons, and implemented that in TinyOS. Experimental results show the deterministic error bound less than 9.2 clock ticks (280 μsec) on average at the first hop, which is close to the simulation results. Further, by a combination with previously proposed synchronization algorithms, it achieves the estimation error of 1.54 ticks at 10 hop distance, which is more than 40% better than FTSP, while giving deterministic error bounds.


Quartz Assure Hull Guaran Garmin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    MSP430 32-kHz Crystal Oscillators, Rev. B (2006),
  5. 5.
    MSP430x1xx Family User’s Guide, Rev. F (2006),
  6. 6.
    Berthaud, J.M.: Time synchronization over networks using convex closures. IEEE/ACM Trans. Networking 8(2), 265–277 (2000)CrossRefGoogle Scholar
  7. 7.
    Blum, P., Meier, L., Thiele, L.: Improved interval-based clock synchronization in sensor networks. In: IPSN (2004)Google Scholar
  8. 8.
    Capkun, S., Cagalj, M., Srivastava, M.: Secure localization with hidden and mobile base stations. In: INFOCOM (2006)Google Scholar
  9. 9.
    Duda, A., Harrus, G., Haddad, Y., Bernard, G.: Estimating global time in distributed systems. In: ICDCS (1987),
  10. 10.
    Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters 1, 132–133 (1972)CrossRefMATHGoogle Scholar
  11. 11.
    Kirkpatrick, D.G., Snoeyink, J.: Computing common tangents without a separating line. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 183–193. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Kusy, B., Dutta, P., Levis, P., Maroti, M., Ledeczi, A., Culler, D.: Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services. Int. J. Ad Hoc Ubiquitous Comput. 1(4), 239–251 (2006)CrossRefGoogle Scholar
  13. 13.
    Lamport, L.: Synchronizing time servers. SRC Research Report 18 (1987)Google Scholar
  14. 14.
    Lenzen, C., Sommer, P., Wattenhofer, R.: Optimal clock synchronization in networks. In: SenSys (2009)Google Scholar
  15. 15.
    Maróti, M., Kusy, B., Simon, G., Lédeczi, A.: The flooding time synchronization protocol. In: SenSys (2004)Google Scholar
  16. 16.
    Marzullo, K., Owicki, S.: Maintaining the time in a distributed system. In: PODC (1983)Google Scholar
  17. 17.
    Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput. Syst. Sci. 23(2), 166–204 (1981)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Römer, K.: Time synchronization in ad hoc networks. In: MobiHoc (2001)Google Scholar
  19. 19.
    Schmid, T., Charbiwala, Z., Shea, R., Srivastava, M.B.: Temperature compensated time synchronization. IEEE Embedded Systems Letters 1(2), 37–41 (2009)CrossRefGoogle Scholar
  20. 20.
    Schmid, U., Schossmaier, K.: Interval-based clock synchronization. Real-Time Systems 12(2), 173–228 (1997)CrossRefMATHGoogle Scholar
  21. 21.
    Sommer, P., Wattenhofer, R.: Gradient clock synchronization in wireless sensor networks. In: IPSN (2009)Google Scholar
  22. 22.
    Vig, J.R.: Introduction to quartz frequency standards. Tech. Rep. SLCET–TR–92–1, Army Research Laboratory (1992),
  23. 23.
    Yoon, S., Veerarittiphan, C., Sichitiu, M.L.: Tiny-sync: Tight time synchronization for wireless sensor networks. ACM Trans. Sensor Networks 3(2), 8 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ryo Sugihara
    • 1
  • Rajesh K. Gupta
    • 1
  1. 1.Computer Science and Engineering DepartmentUniversity of CaliforniaSan DiegoUSA

Personalised recommendations