A Mobility Management Framework for Optimizing the Trajectory of a Mobile Base-Station

  • Madhu Mudigonda
  • Trisul Kanipakam
  • Adam Dutko
  • Manohar Bathula
  • Nigamanth Sridhar
  • Srinivasan Seetharaman
  • Jason O. Hallstrom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6567)


We describe a software framework for prescribing the trajectory path of a mobile sink in a wireless sensor network under an extensible set of optimization criteria. The framework relies on an integrated mobility manager that continuously advises the sink using application-specific network statistics. We focus on a reference implementation for TinyOS. Through extensive physical experimentation, we show that the mobility manager significantly improves network performance under a range of optimization scenarios.


Sensor Network Wireless Sensor Network Network Lifetime Residual Energy Network Congestion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Somasundara, A., et al.: Controllably mobile infrastructure for low energy embedded networks. IEEE Trans. on Mobile Computing 05(8), 958–973 (2006)CrossRefGoogle Scholar
  2. 2.
    Baruah, P., et al.: Learning-enforced time domain routing to mobile sinks in wireless sensor fields. In: LCN 2004, Washington, DC, USA, pp. 525–532. IEEE, Los Alamitos (2004)Google Scholar
  3. 3.
    Basagni, S., et al.: Controlled sink mobility for prolonging wireless sensor networks lifetime. Wireless Networks 14(6), 831–858 (2008)CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, et al.: Communication power optimization in a sensor network with a path-constrained mobile observer. ACM TOSN 2(3), 297–324 (2006)CrossRefGoogle Scholar
  5. 5.
    Chatzigiannakis, I., et al.: Sink mobility protocols for data collection in wireless sensor networks. In: MobiWac 2006, pp. 52–59. ACM, New York (2006)Google Scholar
  6. 6.
    Dalton, A.R., et al.: Reducing the impact of link quality variation in embedded wireless networks. Int. J. of Ad Hoc & Sensor Networks (AHSWN)Google Scholar
  7. 7.
    Ekici, E., Gu, Y., Bozdag, D.: Mobility-based communication in wireless sensor networks. IEEE Communications Magazine 44(6), 56–62 (2006)CrossRefGoogle Scholar
  8. 8.
    Jea, D., et al.: Multiple controlled mobile elements (data mules) for data collection in sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kansal, A., et al.: Intelligent fluid infrastructure for embedded networks. In: MobiSys 2004, pp. 111–124. ACM, New York (2004)Google Scholar
  10. 10.
    Freeman, L.C., et al.: Centrality in Valued Graphs: A Measure of Betweeness Based on Network Flow. Social Networks 13(141), 141–154 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Luo, J., Hubaux, J.-P.: Joint mobility and routing for lifetime elongation in wireless sensor networks. In: INFOCOM 2005, New York, pp. 1735–1746 (2005)Google Scholar
  12. 12.
    Luo, J., et al.: Mobiroute: Routing towards a mobile sink for improving lifetime in sensor networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 480–497. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Papadimitriou, I., Georgiadis, L.: Maximum lifetime routing to mobile sink in wireless sensor networks. In: Proc. IEEE SoftCOM, New York (September 2005)Google Scholar
  14. 14.
    Jain, S., et al.: Exploiting mobility for energy efficient data collection in wireless sensor networks. Mob. Netw. Appl. 11(3), 327–339 (2006)CrossRefGoogle Scholar
  15. 15.
    Shah, R., et al.: Data mules: modeling a three-tier architecture for sparse sensor networks. In: WSNA 2003, New York, May 11, pp. 30–41. IEEE Press, Los Alamitos (2003)Google Scholar
  16. 16.
    Srinivasan, K., Levis, P.: RSSI is under appreciated. In: EmNets 2006, Boston, MA (May 2006)Google Scholar
  17. 17.
    Tong, L., Zhao, Q., Adireddy, S.: Sensor networks with mobile agents. In: MILCOM 2003, New York, pp. 688–693. IEEE, Los Alamitos (2003)Google Scholar
  18. 18.
    Urgaonkar, R., Krishnamachari, B.: FLOW: An efficient forwarding scheme to mobile sink in wireless sensor networks. In: SECON 2004, Washington, DC (2004)Google Scholar
  19. 19.
    Vincze, Z., et al.: Adaptive sink mobility in event-driven multi-hop wireless sensor networks. In: InterSense 2006, p. 13. ACM, New York (2006)Google Scholar
  20. 20.
    Wang, W., et al.: Using mobile relays to prolong the lifetime of wireless sensor networks. In: MobiCom 2005, pp. 270–283. ACM, New York (2005)Google Scholar
  21. 21.
    Wang, Z.M., et al.: Exploiting sink mobility for maximizing sensor networks lifetime. In: HICSS 2005, Washington, DC, USA, p. 287.1. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  22. 22.
    Woo, A., et al.: Taming the underlying challenges of reliable multihop routing in sensor networks. In: SenSys 2003, pp. 14–27. ACM, New York (2003)Google Scholar
  23. 23.
    Younis, O., Fahmy, S.: An experimental study of routing and data aggregation in sensor networks. In: LOCAN 2005, Washington, DC, USA (November 2005)Google Scholar
  24. 24.
    Zhao, W., et al.: A message ferrying approach for data delivery in sparse mobile ad hoc networks. In: MobiHoc 2004, pp. 187–198. ACM, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Madhu Mudigonda
    • 1
  • Trisul Kanipakam
    • 1
  • Adam Dutko
    • 1
  • Manohar Bathula
    • 1
  • Nigamanth Sridhar
    • 1
  • Srinivasan Seetharaman
    • 2
  • Jason O. Hallstrom
    • 3
  1. 1.Electrical & Computer EngineeringCleveland State UniversityUSA
  2. 2.Deutsche Telekom LabsGermany
  3. 3.School of ComputingClemson UniversityUSA

Personalised recommendations