A Mobility Management Framework for Optimizing the Trajectory of a Mobile Base-Station

  • Madhu Mudigonda
  • Trisul Kanipakam
  • Adam Dutko
  • Manohar Bathula
  • Nigamanth Sridhar
  • Srinivasan Seetharaman
  • Jason O. Hallstrom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6567)

Abstract

We describe a software framework for prescribing the trajectory path of a mobile sink in a wireless sensor network under an extensible set of optimization criteria. The framework relies on an integrated mobility manager that continuously advises the sink using application-specific network statistics. We focus on a reference implementation for TinyOS. Through extensive physical experimentation, we show that the mobility manager significantly improves network performance under a range of optimization scenarios.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Somasundara, A., et al.: Controllably mobile infrastructure for low energy embedded networks. IEEE Trans. on Mobile Computing 05(8), 958–973 (2006)CrossRefGoogle Scholar
  2. 2.
    Baruah, P., et al.: Learning-enforced time domain routing to mobile sinks in wireless sensor fields. In: LCN 2004, Washington, DC, USA, pp. 525–532. IEEE, Los Alamitos (2004)Google Scholar
  3. 3.
    Basagni, S., et al.: Controlled sink mobility for prolonging wireless sensor networks lifetime. Wireless Networks 14(6), 831–858 (2008)CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, et al.: Communication power optimization in a sensor network with a path-constrained mobile observer. ACM TOSN 2(3), 297–324 (2006)CrossRefGoogle Scholar
  5. 5.
    Chatzigiannakis, I., et al.: Sink mobility protocols for data collection in wireless sensor networks. In: MobiWac 2006, pp. 52–59. ACM, New York (2006)Google Scholar
  6. 6.
    Dalton, A.R., et al.: Reducing the impact of link quality variation in embedded wireless networks. Int. J. of Ad Hoc & Sensor Networks (AHSWN)Google Scholar
  7. 7.
    Ekici, E., Gu, Y., Bozdag, D.: Mobility-based communication in wireless sensor networks. IEEE Communications Magazine 44(6), 56–62 (2006)CrossRefGoogle Scholar
  8. 8.
    Jea, D., et al.: Multiple controlled mobile elements (data mules) for data collection in sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kansal, A., et al.: Intelligent fluid infrastructure for embedded networks. In: MobiSys 2004, pp. 111–124. ACM, New York (2004)Google Scholar
  10. 10.
    Freeman, L.C., et al.: Centrality in Valued Graphs: A Measure of Betweeness Based on Network Flow. Social Networks 13(141), 141–154 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Luo, J., Hubaux, J.-P.: Joint mobility and routing for lifetime elongation in wireless sensor networks. In: INFOCOM 2005, New York, pp. 1735–1746 (2005)Google Scholar
  12. 12.
    Luo, J., et al.: Mobiroute: Routing towards a mobile sink for improving lifetime in sensor networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 480–497. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Papadimitriou, I., Georgiadis, L.: Maximum lifetime routing to mobile sink in wireless sensor networks. In: Proc. IEEE SoftCOM, New York (September 2005)Google Scholar
  14. 14.
    Jain, S., et al.: Exploiting mobility for energy efficient data collection in wireless sensor networks. Mob. Netw. Appl. 11(3), 327–339 (2006)CrossRefGoogle Scholar
  15. 15.
    Shah, R., et al.: Data mules: modeling a three-tier architecture for sparse sensor networks. In: WSNA 2003, New York, May 11, pp. 30–41. IEEE Press, Los Alamitos (2003)Google Scholar
  16. 16.
    Srinivasan, K., Levis, P.: RSSI is under appreciated. In: EmNets 2006, Boston, MA (May 2006)Google Scholar
  17. 17.
    Tong, L., Zhao, Q., Adireddy, S.: Sensor networks with mobile agents. In: MILCOM 2003, New York, pp. 688–693. IEEE, Los Alamitos (2003)Google Scholar
  18. 18.
    Urgaonkar, R., Krishnamachari, B.: FLOW: An efficient forwarding scheme to mobile sink in wireless sensor networks. In: SECON 2004, Washington, DC (2004)Google Scholar
  19. 19.
    Vincze, Z., et al.: Adaptive sink mobility in event-driven multi-hop wireless sensor networks. In: InterSense 2006, p. 13. ACM, New York (2006)Google Scholar
  20. 20.
    Wang, W., et al.: Using mobile relays to prolong the lifetime of wireless sensor networks. In: MobiCom 2005, pp. 270–283. ACM, New York (2005)Google Scholar
  21. 21.
    Wang, Z.M., et al.: Exploiting sink mobility for maximizing sensor networks lifetime. In: HICSS 2005, Washington, DC, USA, p. 287.1. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  22. 22.
    Woo, A., et al.: Taming the underlying challenges of reliable multihop routing in sensor networks. In: SenSys 2003, pp. 14–27. ACM, New York (2003)Google Scholar
  23. 23.
    Younis, O., Fahmy, S.: An experimental study of routing and data aggregation in sensor networks. In: LOCAN 2005, Washington, DC, USA (November 2005)Google Scholar
  24. 24.
    Zhao, W., et al.: A message ferrying approach for data delivery in sparse mobile ad hoc networks. In: MobiHoc 2004, pp. 187–198. ACM, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Madhu Mudigonda
    • 1
  • Trisul Kanipakam
    • 1
  • Adam Dutko
    • 1
  • Manohar Bathula
    • 1
  • Nigamanth Sridhar
    • 1
  • Srinivasan Seetharaman
    • 2
  • Jason O. Hallstrom
    • 3
  1. 1.Electrical & Computer EngineeringCleveland State UniversityUSA
  2. 2.Deutsche Telekom LabsGermany
  3. 3.School of ComputingClemson UniversityUSA

Personalised recommendations