Advertisement

Self-organized Middle-Out Abstraction

  • Sebastian von Mammen
  • Jan-Philipp Steghöfer
  • Jörg Denzinger
  • Christian Jacob
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6557)

Abstract

In this position paper we present a concept to automatically simplify computational processes in large-scale self-organizing multi-agent simulations. The fundamental idea is that groups of agents that exhibit predictable interaction patterns are temporarily subsumed by higher order agents with behaviours of lower computational costs. In this manner, hierarchies of meta-agents automatically abstract large-scale systems involving agents with in-depth behavioural descriptions, rendering the process of upfront simplification obsolete that is usually necessary in numerical approaches. Abstraction hierarchies are broken down again as soon as they become invalid, so that the loss of valuable process information due to simplification is minimized. We describe the algorithm and the representation, we argue for its general applicability and potential power and we underline the challenges that will need to be overcome.

Keywords

Abstraction multi-agent systems middle-out modelling simulation motif detection confidence estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 493–498. ACM, New York (2003)CrossRefGoogle Scholar
  2. 2.
    Dorin, A., McCormack, J.: Self-assembling dynamical hierarchies. Artificial Life Eight, 423 (2003)Google Scholar
  3. 3.
    Fuchs, E., Gruber, T., Nitschke, J., Sick, B.: On-line motif detection in time series with swiftmotif. Pattern Recognition 42(11), 3015–3031 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: Proceedings of the International Conference on Data Engineering, Citeseer, pp. 106–115 (1999)Google Scholar
  5. 5.
    Johnson, S.: Emergence: The Connected Lives of Ants, Brains, Cities, and Software. Scribner, New York (2001)Google Scholar
  6. 6.
    Kiefer, J.: Conditional confidence statements and confidence estimators. Journal of the American Statistical Association 72(360), 789–808 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lenaerts, T., Chu, D., Watson, R.: Dynamical hierarchies. Artificial Life 11(4), 403–405 (2005)CrossRefGoogle Scholar
  8. 8.
    Louis, T.A., Zeger, S.L.: Effective communication of standard errors and confidence intervals. Biostatistics 10(1), 1 (2009)CrossRefGoogle Scholar
  9. 9.
    Mitchell, T.: Introduction to Machine Learning. McGraw Hill, Boston (1997)zbMATHGoogle Scholar
  10. 10.
    Noble, D.: The music of life. Oxford University Press, Oxford (2006)Google Scholar
  11. 11.
    Ramchurn, S.D., Jennings, N.R., Sierra, C., Godo, L.: Devising a trust model for multi-agent interactions using confidence and reputation. Applied Artificial Intelligence 18(9), 833–852 (2004)CrossRefGoogle Scholar
  12. 12.
    Rasmussen, S., Baas, N.A., Mayer, B., Nilsson, M., Olesen, M.W.: Ansatz for dynamical hierarchies. Artificial Life 7(4), 329–353 (2001)CrossRefGoogle Scholar
  13. 13.
    Schuster, P.: How does complexity arise in evolution. Complex 2(1), 22–30 (1996)CrossRefGoogle Scholar
  14. 14.
    Shirazi, A.S., von Mammen, S., Jacob, C.: Adaptive modularization of the MAPK signaling pathway using the multiagent paradigm. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 401–410. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Strogatz, S.H.: Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Westview Press, Boulder (2000)zbMATHGoogle Scholar
  16. 16.
    Wang, Q., Megalooikonomou, V., Faloutsos, C.: Time series analysis with multiple resolutions. Information Systems 35(1), 56–74 (2010)CrossRefGoogle Scholar
  17. 17.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign (2002)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sebastian von Mammen
    • 1
  • Jan-Philipp Steghöfer
    • 2
  • Jörg Denzinger
    • 1
  • Christian Jacob
    • 1
    • 3
  1. 1.Department of Computer ScienceUniversity of CalgaryCanada
  2. 2.Institute of Software & Systems EngineeringAugsburg UniversityGermany
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of CalgaryCanada

Personalised recommendations