CollaGen: Collaboration between automatic cartographic Generalisation Processes

  • Guillaume TouyaEmail author
  • Cécile Duchêne
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Cartographic generalisation seeks to summarise geographical information to produce legible maps at smaller scales. Past research led to the development of many automated cartographic generalisation processes, each one being more or less specialised to a particular problem: a landscape like urban areas, a data theme like land use, a cartographic conflict like linear symbol overlap or most of the time of mix of the three. This paper deals with the development of a model allowing collaborative generalisation i.e. the collaboration between automatic processes like these in order to tackle the generalisation of a complete map. CollaGen, our proposed model, allows to partition data in geographic spaces and to find to best suited process to generalise each space. The applications of a process on a space are automatically orchestrated. Interoperability between processes is managed thanks to formal constraints and side effects are monitored after each process application. Results from CollaGen prototype are shown and discussed.


CollaGen Model Generalisation Process Multiple Representation Geographic Space Sequencing Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bader M, Barrault M, Weibel R (2005) Building displacement over a ductile truss. International Journal of Geographical Information Science 19 (8): 915-936 CrossRefGoogle Scholar
  2. Barrault M, Regnaud N, Duchêne C, Haire K, Baeijs C, Hardy P, Mackaness W, Ruas A, Weibel R (2001) Integrating multi-agent, object oriented and algorithmic techniques for improved automated map generalization. In: 20th International Cartographic Conference, BeijingGoogle Scholar
  3. Beard K (1991) Constraints on rule formation. In: Buttenfield B, McMaster R (eds) Map Generalization, pp. 121-135, LongmanGoogle Scholar
  4. Burghardt D, Schmid S, Stöter J (2007) Investigations on cartographic constraint formalisation. In: 10th ICA Workshop on Generalisation and Multiple Representation, MoscowGoogle Scholar
  5. Brassel K E, Weibel R (1988) A review and conceptual framework of automated map generalization.Google Scholar
  6. International Journal of Geographical Information Science 2 (3): 229-244Google Scholar
  7. Duchêne C (2004) The cartacom model: a generalisation model for taking relational constraints into account. In: 7th ICA Workshop on Generalisation and Multiple Representation, Leicester, UKGoogle Scholar
  8. Duchêne C, Gaffuri J (2008) Combining Three Multi-agent Based Generalisation Models: AGENT, CartACom and GAEL. In: Ruas A, Gold C (eds) Headway in Spatial Data Handling, 13th International Symposium on Spatial Data Handling. LNG&C, pp. 277-296, SpringerGoogle Scholar
  9. Duchêne C, Touya G (2010) Emergence de zones de conflits dans deux modèles de généralisation cartographique multi-agents. In: Occello M, Rejeb L (eds) Systèmes Multi-Agents, Défis Sociétaux, pp. 33-42, CepaduèsGoogle Scholar
  10. Gaffuri J (2007) Field deformation in an agent-based generalisation model: the gael model. In:Google Scholar
  11. Probst F, Kessler C (eds) GI-days 2007 - young researches forum, pp. 1-24, IfGIprints 558 Guillaume Touya, Cécile Duchêne Harrie L, Sarjakoski T (2002) Simultaneous Graphic Generalization of Vector Data Sets. Geoinformatica 6(3): 233-261Google Scholar
  12. Haunert JH (2007) Optimization methods for area aggregation in land cover maps. In: 23rd International Cartographic Conference, Moscow, RussiaGoogle Scholar
  13. Legrand C, Duchêne C, Lecordix F (2005) Propagation of the displacements and deformations during a generalisation process. In: Proceedings of International Cartographic Conference, La Coruna, SpainGoogle Scholar
  14. Lemmens R (2008) Lost and found, the importance of modelling map content semantically. In: Peterson M (ed) International Perspectives on Maps and the Internet, pp. 377-396, SpringerGoogle Scholar
  15. Lutz M (2007) Ontology-Based Descriptions for Semantic Discovery and Composition of Geoprocessing Services. GeoInformatica 11(1): 1-36CrossRefGoogle Scholar
  16. McMaster R B, Shea K S (1988) Cartographic generalization in digital environment: A framework for implementation in a gis. In: GIS/LIS'88, pp. 240-249Google Scholar
  17. Neun M, Burghardt D, Weibel R (2008) Web service approaches for providing enriched data structures to generalisation operators. International Journal of Geographical Information Science 22 (2): 133-165CrossRefGoogle Scholar
  18. Regnauld N (2007) Evolving from automating existing map production systems to producingGoogle Scholar
  19. maps on demand automatically. In: ICA Workshop on Generalisation and Multiple RepresentationGoogle Scholar
  20. Renard J, Gaffuri J, Duchêne C (2010) Capitalisation problem in research - example of a new platform for generalisation: Cartagen. In: 13th ICA Workshop on Generalisation and Multiple Representation, ZurichGoogle Scholar
  21. Ruas A (2000) The roles of meso objects for generalisation. In: Spatial Data Handling, pp. 3b. 50-63Google Scholar
  22. Ruas A, Plazanet C (1996) Strategies for automated generalization. In: 7th International Symposium on Spatial Data Handling, Delft, Netherlands, pp. 319-336Google Scholar
  23. Stoter J, Burghardt D, Duchêne C, Baella B, Bakker N, Blok C, Pla M, Regnauld N, Touya G, Schmid S (2009) Methodology for evaluating automated map generalization in commercial software. Computers, Environment and Urban Systems 33 (5): 311-324CrossRefGoogle Scholar
  24. Touya G (2008) First Thoughts for the Orchestration of Generalisation Methods on Heterogeneous Landscapes. In: 11th ICA Workshop on Generalisation and Multiple Representation, Montpellier, FranceGoogle Scholar
  25. Touya G (2010) Relevant Space Partitioning for Collaborative Generalisation. In: 13th ICA Workshop on Generalisation and Multiple Representation, Zurich.Google Scholar
  26. Touya G, Duchêne C, Ruas A (2010) Collaborative Generalisation: Formalisation of Cartographic Knowledge to Orchestrate Different Generalisation Processes. In: Fabrikant SI, Reichenbacher T, van Kreveld M, Schlieder C (eds) GIScience 2010, LNCS 6292, pp. 264- 278, SpringerGoogle Scholar
  27. Ware M J, Jones C B, Thomas N (2003) Automated map generalization with multiple operators:Google Scholar
  28. a simulated annealing approach. International Journal of Geographical Information ScienceGoogle Scholar
  29. 17 (8): 743-769.Google Scholar
  30. Zhou S, Regnauld N, Roensdorf C (2008) Towards a data model for update propagation in mrdlm. In: 11th ICA Workshop on Generalisation and Multiple Representation. Montpellier, FranceGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratoire COGIT- IGN FranceSaint-Mandé CedexFrance

Personalised recommendations