Advertisement

Application-Aware Power Saving for Online Transaction Processing Using Dynamic Voltage and Frequency Scaling in a Multicore Environment

  • Yuto Hayamizu
  • Kazuo Goda
  • Miyuki Nakano
  • Masaru Kitsuregawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6566)

Abstract

Power consumption in data centers has been growing remarkably recent years, and power saving of their servers is essential. For power saving of these servers, power saving of an online transaction processing (OLTP) systems, which are major applications in data centers, is important. The OLTP system consumes relatively large amount of power because it is often equipped with a lot of computing and storage resources. Its power saving is difficult because it is required to meet a service level agreement (SLA), and few power saving technologies have been proposed so far.

In this paper, we proposed an application-aware power saving for OLTP in a multicore environment. Our proposed methodology aims to save power consumption of OLTP systems by dynamically scaling the operating frequency of processors based on response time observation. Response time is often an important metric of SLA. Application-aware power saving enables power saving in such systems subject to SLAs. In our experimental evaluations using industrial standard benchmark TPC-C and real server workloads, 7.6% of total power consumption was saved. This reduction corresponds to 1000kJ a day in a typical entry level server.

Keywords

database system multicore online transaction processing power saving application aware service level agreement dynamic voltage frequency scaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Ailamaki, A., Bernstein, P.A., Brewer, E.A., Carey, M.J., Chaudhuri, S., Doan, A., Florescu, D., Franklin, M.J., Garcia-Molina, H., Gehrke, J., Gruenwald, L., Haas, L.M., Halevy, A.Y., Hellerstein, J.M., Ioannidis, Y.E., Korth, H.F., Kossmann, D., Madden, S., Magoulas, R., Ooi, B.C., O’Reilly, T., Ramakrishnan, R., Sarawagi, S., Stonebraker, M., Szalay, A.S., Weikum, G.: The claremont report on database research. SIGMOD Rec. 37(3), 9–19 (2008)CrossRefGoogle Scholar
  2. 2.
    Arlitt, M., Jin, T.: Workload characterization of the 1998 world cup web site. Tech. rep., Hewlett Packard Laboratories Palo Alto (September 1999)Google Scholar
  3. 3.
    Chen, S., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Sanders, W.H.: Blackbox prediction of the impact of dvfs on end-to-end performance of multitier systems. SIGMETRICS Perform. Eval. Rev. 37(4), 59–63 (2010)CrossRefGoogle Scholar
  4. 4.
    EPA: Epa report to congress on server and data center energy efficiency. Tech. rep., U.S. Environmental Protection Agency (2007), http://tinyurl.com/2jz3ft
  5. 5.
    Graefe, G.: Database servers tailored to improve energy efficiency. In: Apel, S., Rosenmüller, M., Saake, G., Spinczyk, O. (eds.) Software Engineering for Tailor-made Data Management. pp. 24–28. University of Magdeburg (2008)Google Scholar
  6. 6.
    Harizopoulos, S., Shah, M.A., Meza, J., Ranganathan, P.: Energy efficiency: The new holy grail of data management systems research. In: CIDR 2009, Fourth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, Online Proceedings (2009)Google Scholar
  7. 7.
    Herbert, S., Marculescu, D.: Variation-aware dynamic voltage/frequency scaling. In: IEEE 15th International Symposium on High Performance Computer Architecture, HPCA 2009, pp. 301–312 (February 2009)Google Scholar
  8. 8.
    Herbert, S., Marculescu, D.: Analysis of dynamic voltage/frequency scaling in chip-multiprocessors. In: ISLPED 2007: Proceedings of the 2007 International Symposium on Low Power Electronics and Design, pp. 38–43. ACM, New York (2007)CrossRefGoogle Scholar
  9. 9.
    Lang, W., Patel, J.M.: Towards eco-friendly database management systems. In: CIDR 2009, Fourth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7, Online Proceedings (2009)Google Scholar
  10. 10.
    Lee, W.Y., Ko, Y.W., Lee, H., Kim, H.: Energy-efficient scheduling of a real-time task on dvfs-enabled multi-cores. In: ICHIT 2009: Proceedings of the 2009 International Conference on Hybrid Information Technology, pp. 273–277. ACM, New York (2009)CrossRefGoogle Scholar
  11. 11.
    Meza, J., Shah, M.A., Ranganathan, P., Fitzner, M., Veazey, J.: Tracking the power in an enterprise decision support system. In: Henkel, J., Keshavarzi, A., Chang, N., Ghani, T. (eds.) ISLPED, pp. 261–266. ACM, New York (2009)CrossRefGoogle Scholar
  12. 12.
    Poess, M., Nambiar, R.O.: Energy cost, the key challenge of today’s data centers: a power consumption analysis of tpc-c results. Proceedings of VLDB Endowment 1(2), 1229–1240 (2008)CrossRefGoogle Scholar
  13. 13.
    Poess, M., Nambiar, R.O.: Tuning servers, storage and database for energy efficient data warehouses. In: Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, pp. 1006–1017. IEEE, Los Alamitos (2010)CrossRefGoogle Scholar
  14. 14.
    Poess, M., Othayoth Nambiar, R.: A power consumption analysis of decision support systems. In: WOSP/SIPEW 2010: Proceedings of the first joint WOSP/SIPEW International Conference on Performance Engineering, pp. 147–152. ACM, New York (2010)CrossRefGoogle Scholar
  15. 15.
    Network Power, E.: Energy logic: Reducing data center energy consumption by creating savings that cascade across systems. White paper, Emerson Electric Co. (2009), http://tinyurl.com/7dhks3
  16. 16.
    Shanley, K.: Tpc releases new benchmark: Tpc-c. SIGMETRICS Performance Evaluation Review 20(2), 8–9 (1992)CrossRefGoogle Scholar
  17. 17.
    Tsirogiannis, D., Harizopoulos, S., Shar, M.A.: Analyzing the energy efficiency of a database server. In: SIGMOD 2010: Proceedings of the 36th SIGMOD International Conference on Management of Data. ACM, New York (2010)Google Scholar
  18. 18.
    Xu, Z., Tu, Y.C., Wang, X.: Exploring power-performance tradeoffs in database systems. In: Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, pp. 485–496. IEEE, Los Alamitos (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yuto Hayamizu
    • 1
  • Kazuo Goda
    • 1
  • Miyuki Nakano
    • 1
  • Masaru Kitsuregawa
    • 1
  1. 1.Institute of Industrial Sciencethe University of TokyoTokyoJapan

Personalised recommendations