Advertisement

A Class of Chrystal-Type Equations

  • Kolumban HutterEmail author
  • Yongqi Wang
  • Irina P. Chubarenko
Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM, volume 2)

Abstract

This chapter is concerned with the derivation of an approximate system of equations for slender fluid bodies using free-surface hydrodynamics on the rotating Earth. Early methods of computing free oscillations or wind-forced responses of oblong lakes or ocean basins assume exclusively uniaxial motion of the water in the long direction of the lake. Consistent derivation of the governing equations from the balances of mass and momentum requires that the rotation of the Earth is ignored. These traditional methods of calculating free oscillations are the channel approximations, of which the classical example is the set of Chrystal equations [4,  5] for barotropic motions. In the linear approximation the corresponding two-layer channel equations can also be derived. They yield the V1Hm modes By ‘V1Hm’ a baroclinic seiche mode is characterized which is of vertical mode 1 and horizontal mode m. For elongated basins Hm is sometimes replaced by Lm. of a 2-layered fluid with free surface, subject to the neglect of the effects of the rotation of the Earth.

Keywords

Channel Approximation Channel Model Surface Elevation Free Oscillation Straight Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bäuerle, E.: Tranverse baroclinic oscillations in Lake Überlingen Aquatic Sciences, 56, 145–149 (1994)Google Scholar
  2. 2.
    Charney, J. G.: Generation of oceanic currents by wind J. Marine Research, 14, 477–498 (1955)Google Scholar
  3. 3.
    Caloi, P.: Free oscialltions in the Lago di Garda [in Italian] Arch. Meteorol. Geophys. Bioklimatol.Ser A7, 434–465 (1954)Google Scholar
  4. 4.
    Chrystal, G.: Some results in the mathematical theory of seiches. Proc. Royal Soc. Edinburgh, 25, 328–337 (1904)Google Scholar
  5. 5.
    Chrystal, G.: Some further results in the mathematical theory of seiches. Proc. Royal Soc. Edinburgh, 25, 637–647 (1904)Google Scholar
  6. 6.
    Csanady, G. T.: Reesponse of large stratified lakes to wind. J. Phys. Oceanogr. 2(1), 3–13 (1972)Google Scholar
  7. 7.
    Defant, A.: Neuere Methoden zur Ermittlung der Eigenschwingungen (Seiches) von abgeschlossenen Wassermassen (Seen, Buchten, usw.) Ann. Hydrogr. Berlin, 46, 78–85 (1918)Google Scholar
  8. 8.
    Defant, F.: Theorie der Seiches des Michigansees und ihre Abwandlung durch Wirkung der Corioliskraft. Arch. Meteorol. Geophys. Bioklimatol.Ser. A 6, 218–241 (1953)Google Scholar
  9. 9.
    Defant, A.: Physical Oceanography. Vol I, Pergamon Press, New York, (1961)Google Scholar
  10. 10.
    Horn, W.: Physikalisch-limnologische Untersuchungen in Schweizer Seen. Wasser, Energ, Luft, 9, 276–284 (1980)Google Scholar
  11. 11.
    Horn, W., Mortimer, C. H. and Schwab, D. J.: Wind-induced internal seiches in Lake Zurich observed and modeled. Limnol. Oceanogr. 31, 1232–1254 (1986)Google Scholar
  12. 12.
    Howard, L. N.: Lectures on fluid dynamicsIn: Notes on the 1960-Summer Study Program in geophysical fluid dynamics (Spiegel, E. A., ed.), Vol. 1, Woods Hole, Mass (1960)Google Scholar
  13. 13.
    Hutter, K.: Strömungsdynamische Untersuchungen im Zürich- und Luganersee. Ein Vergleich von Feldmessungen und Resultaten theoretischer Modelle Scweiz. Z. Hydrol. 45, 101–144 (1983)Google Scholar
  14. 14.
    Hutter, K. and Raggio, G.: A Chrystal-Model describing gravitational barotropic motion in elongated lakes Arch. Met. Geophys. Biokl.Ser. A, 31, 361–378 (1982)Google Scholar
  15. 15.
    Johns, B. and Hamzah, A. M. O.: On the seiceh motion in curved lakes. Cambridge Philos. Soc. 66, 607–615 (1969)Google Scholar
  16. 16.
    Kelvin, Lord (William Thomson): On the gravitational oscillations of rotating water. Proc. Roy. Soc. Edinburth, 10, 92–100 (1879); reprinted in Phil. Mag. 10, 109–116 (1880)Google Scholar
  17. 17.
    Lemmin U. and Mortimer C. H.: Test of an extension to internal seiches of Defant’s procedure for determination of surface seiche characteristics in real lakes. Limnol.Oceanogr. 31(6), 1207–1231 (1986)Google Scholar
  18. 18.
    Lamb, H.: Hydrodynamics6th editioin Cambridge University Press (1932)Google Scholar
  19. 19.
    Marcelli, L.: The seiches of Lago di Lugano [in Italian]. Publ. Ist. Naz. Geofis., Roma. Ann. Geofis, 1, 454 (1948)Google Scholar
  20. 20.
    Mortimer, C. H. and Fee. E. J.: Free surface oscillation and tides of Lakes Michgan and Superior. Phil. Trans. Roy. Soc., London A 281, 1–61 (1976)Google Scholar
  21. 21.
    Mortimer, C. H. and Horn, W.: Internal wave dynamics and their implication for plankton biology in the Lake of Zurich. Vierteljahresschr. Naturforsch. Ges. Zürich, 127, 299–318 (1982)Google Scholar
  22. 22.
    Pnuelli, A. and Pekeris, C. L.: Free tidal oscillations in rotation flat basins of the form of rectangles and sectors of circles. Proc. Roy. Soc., London, A263, 149–171 (1968)Google Scholar
  23. 23.
    Poincaré, H.: Lećons de mécanique Céleste, 3, Thẃorie de Marées,1910 Gauthier-VillarsGoogle Scholar
  24. 24.
    Raggio, G. M.: A channel model for a curved elongated homogeneous lake. Ph. D. Dissertation Swiss Federal Inst. Techn., Zurich. Diss. No 6742, pp. 222 (1980)Google Scholar
  25. 25.
    Raggio, G.: On the Kantorovich technique applied to the tidal equations in elongated lakes. Computational Physics, 46(1), 43–53 (1982)CrossRefGoogle Scholar
  26. 26.
    Raggio, G., and Hutter, K.: An extended channel model for the prediction of motion in elongated homogeneous lakes. Part 1. Theoretical introduction. J. Fluid Mech. 121, 231–255 (1982a)Google Scholar
  27. 27.
    Raggio, G., and Hutter, K.: An extended channel model for the prediction of motion in elongated homogeneous lakes. Part 2. First-order model applied ti ideal geometry: rectangular basins with flat bottom J. Fluid Mech. 121, 257–281 (1982b)Google Scholar
  28. 28.
    Raggio, G., and Hutter, K.: An extended channel model for the prediction of motion in elongated homogeneous lakes. Part 3. Free oscillations in natural basins J. Fluid Mech. 121, 283–299 (1982c)Google Scholar
  29. 29.
    Rao, D. B.: Free gravitational oscillations in a narrow rotating rectangular basin. J. Fluid Mech. 25, 523–555 (1966)Google Scholar
  30. 30.
    Rao, D. B and Schwab, D. J.: Two-dimensional normal modes in arbitrary enclosed basins on the rotating Earth: Applications to Lakes Ontario and Superior. Phil. Trans. Roy. Soc., London, A 281, 63–96 (1976)Google Scholar
  31. 31.
    Servais, F.: Etude théoretique des oscillations libres (seiches) du Lac Tanganika. Explor. Hydrobiol. Tanganika 2 Fac. 3. Inst. R. Sci. Nat. Belg.113 p. (1957)Google Scholar
  32. 32.
    Shimizu, K, Imbergert, J. and Kumagai, M.: Horizontal structure and excitation of primary motions in a strongly stratified lake Limnolo. Oceanogr., 52(6), 2641–2655 (2007)Google Scholar
  33. 33.
    Scott, M. R. and Watts, H. A.: A computer code fortwo-point boundary value problem via orthogonalization. Sandia Laboratories, Albuquerque, Sandia-report-78-1501 (1979)Google Scholar
  34. 34.
    Taylor, G. I.: Tidal oscillations in gulfs and basins Proc. London Math. Soc.Series 2, XX, 148–181 (1972)Google Scholar
  35. 35.
    Watts, H. A., Scott, M. R. and Lord, M. E.: Solving complex valued differential systems. Sandia Laboratories, Albuquerque, report 78-1501 (1979)Google Scholar
  36. 36.
    Wedderburn, E. M.: The temperature of the fresh-water lochs of Scotland, with special reference to loch Ness Trans. Royal Soc. Edinburg, 45, 407–489 (1907)Google Scholar
  37. 37.
    Weddderburn, E. M.: The temperature seiche. Hydrodynamical theory oftemperature oscillationsd in lakes Trans. Royal Soc. Edinburg, 47, 628–684 (1911)Google Scholar
  38. 38.
    Weddderburn, E. M.: Temperature observations in Loch Earn. With afurther contribution to the hydrodynamical theory of the temperature seiche. Trans. Royal Soc. Edinburg, 48, 629–695 (1912)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kolumban Hutter
    • 1
    Email author
  • Yongqi Wang
    • 2
  • Irina P. Chubarenko
    • 3
  1. 1.c/o Versuchsanstalt für Wasserbau Hydrologie und Glaziologie ETH-ZentrumETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany
  3. 3.P.P. Shirshov Institute of OceanologyRussian Academy of SciencesKaliningradRussia

Personalised recommendations