Advertisement

Topographic Waves in Enclosed Basins: Fundamentals and Observations

  • Kolumban HutterEmail author
  • Yongqi Wang
  • Irina P. Chubarenko
Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM, volume 2)

Abstract

In Sect. 11.2, the notions of first and second class waves were introduced. The former were said to be due to the action of the gravity force. These waves are therefore also called gravity waves. The latter are due to the rotation of the Earth and cease to exist when the frame of reference is inertial. These waves are alternatively also termed Rossby-, vortex-, geostrophic or gyration-waves, see Fig. 19.1.

Keywords

Wind Stress Gravity Wave Potential Vorticity Topographic Wave Baroclinic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abramowitz, M. and Stegun, I. A.: Handbook of mathematical functions. Dover (1972)Google Scholar
  2. 2.
    Ball, K. F.: Second class motions of a shallow liquid. J. Fluid Mech., 23, 545–561 (1965)CrossRefGoogle Scholar
  3. 3.
    Bäuerle, E.: Topographic waves in the Baltic Sea. Proc. XIV. Conf of Baltic Oceaographers, Gdynia (1984)Google Scholar
  4. 4.
    Bäuerle, E.: Internal free oscillations in the Lake of Geneva. Annales Geophysicae, 3, 199–206 (1985)Google Scholar
  5. 5.
    Birchfield, G. E. and Hickie, B. P.: The time dependent response of a circular basin of variable depth to wind stress. J. Phys. Oceanogr., 7, 691–701 (1977)CrossRefGoogle Scholar
  6. 6.
    Clarke, A. J.: Observational and numerical evidence for wind-forced coastal trapped long waves. J. Phys. Oceanogr., 7, 231–247 (1977)CrossRefGoogle Scholar
  7. 7.
    Csanady, G.: Topographic waves in Lake Ontario. J. Phys. Oceanogr., 6, 93–103 (1976)CrossRefGoogle Scholar
  8. 8.
    Finlayson, B.A.: The Method of weighted residuals and variational principles Academic Press (1972)Google Scholar
  9. 9.
    Gill, A. E. and Schumann, E. H.: The generation of long shelf waves by the wind. J. Phys. Oceanogr., 4, 83–90 (1974)CrossRefGoogle Scholar
  10. 10.
    Graf, W.: Hydrodynamics of the Lake of Geneva. Schw. Z. Hydrol., 45, 62–100 (1983)Google Scholar
  11. 11.
    Gratton, Y.: Low frequency vorticity waves over strong topography. Ph.D. Thesis, Univ. of British Columbia, 132 pp. (1983)Google Scholar
  12. 12.
    Gratton, Y. and LeBlond, P. H.: Vorticity waves over strong topography. J. Phys. Oceanogr., 16, 151–166 (1986)CrossRefGoogle Scholar
  13. 13.
    Huang, J. C. K. and Saylor, J.H.: Vorticity waves in a shallow basin. Dyn. Atmos. Oceans, 6, 177–196 (1982)CrossRefGoogle Scholar
  14. 14.
    Huthnance, J. M.: On coastal trapped waves: Analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr., 8, 74–92 (1978)CrossRefGoogle Scholar
  15. 15.
    Hutter, K.: Strömungsdynamische Untersuchungen im Zürich- und Luganersee. Schw. Z. Hydrol., 45, 102–144 (1983)Google Scholar
  16. 16.
    Hutter, K.: Fundamental equations and approximations. In Hydrodynamics of Lakes. CISM 286, edited by K. Hutter, 1–37, Springer, Wien-New York (1984a)Google Scholar
  17. 17.
    Hutter, K.: Mathematische Vorhersage von barotropen und baroklinen Prozessen im Zürich- und Luganersee. Vierteljahreszeitschrift der Naturf. Ges., 129, 51—92 (1984b)Google Scholar
  18. 18.
    Hutter, K.: Waves and oscillations in the ocean and in lakes. In: Continuum mechanics in environmental sciences and geophysics (K. Hutter, ed.). Springer Verlag Vienna. New York, 79–240 (1993)Google Scholar
  19. 19.
    Hutter, K., Salvadè, G. and Schwab, D. J.: On internal wave dynamics in the Northern basin of Lake of Lugano. Geophys. Astrophys. Fluid Dyn., 27, 299–336 (1983)CrossRefGoogle Scholar
  20. 20.
    Johnson, E. R.: Topographic waves in elliptical basins. Geophys. Astrophys. Fluid Dyn., 37, 279–295 (1987a)CrossRefGoogle Scholar
  21. 21.
    Johnson, E. R.: A conformal mapping technique for topographic wave problems. J. Fluid Mech., 177, 395–405 (1987b)CrossRefGoogle Scholar
  22. 22.
    Johnson, E.R.: Topographic waves in open domains. Part I: Boundary conditions and frequency estimates. J. Fluid Mech., 200, 69–76 (1989)Google Scholar
  23. 23.
    Johnson, E. R. and Kaoullas, G.: Bay-trapped low-frequency oscillations in lakes. Geophys. Astrophys. Fluid Dyn., 105(1), 48–60 (2011)CrossRefGoogle Scholar
  24. 24.
    Kielmann, J.: The generation of eddy-like structures in a model of the Baltic Sea by low frequency wind forcing (unpublished) (1983)Google Scholar
  25. 25.
    Kielmann, J. and Simons, T. J.: Baroclinic circulation models. In: Hydrodynamics of lakes CISM Lecture Notes, 286 (K. Hutter, ed.), 235-285, Springer Verlag, Vienna-New York (1984)Google Scholar
  26. 26.
    Lamb, H.: Hydrodynamics. 6th ed. Cambridge University Press (1932)Google Scholar
  27. 27.
    LeBlond, P. H. and Mysak, L. A.: Waves in the Ocean. Elsevier (1980)Google Scholar
  28. 28.
    Marmorino, G. O.: Lowfrequency current fluctuation in Lakes Ontario. J. Geophys. Res., 84, 1206–1214 (1979)CrossRefGoogle Scholar
  29. 29.
    Mysak, L. A.: Recent advances in shelf wave dynamics. Review of Geophysics and Space Physics, 18, 211–241 (1980)CrossRefGoogle Scholar
  30. 30.
    Mysak, L. A. Topographic waves in lakes. In Hydrodynamic of Lakes, CISM 286, edited by K. Hutter, 81–128, Springer, Wien-New York. (1984)Google Scholar
  31. 31.
    Mysak, L. A. Elliptical topographic waves. Geophys. Astrophys. Fluid Dyn., 31, 93–135 (1985)Google Scholar
  32. 32.
    Mysak, L. A., Salvadè, G., Hutter, K. and Scheiwiller, T.: Lake of Lugano and topographic waves. Nature, 306, 46–48 (1983)CrossRefGoogle Scholar
  33. 33.
    Mysak, L. A., Salvadè, G., Hutter, K. and Scheiwiller, T.: Topographic waves in an elliptical basin with application to the Lake of Lugano. Phil. Trans. R. Soc. London, A 316, 1–55 (1985)Google Scholar
  34. 34.
    Poincaré, H.: Théorie des marées. Leçon de mécanique céleste, 3, Paris (1910)Google Scholar
  35. 35.
    Saylor, J. H., Huang, J. S. K. and Reid, R. O.: Vortex modes in Southern Lake Michigan. J. Phys. Oceanogr., 10, 1814–1823 (1980)CrossRefGoogle Scholar
  36. 36.
    Saylor, J. H. and Miller, G. S.: Vortex modes of particular Great Lakes basins, Great Lakes Environmental research Laboratory, Contribution, 394, NOAA, Ann Arbor, Michigan USA (1983)Google Scholar
  37. 37.
    Simons, T. J.: Wind-driven circulations in the South-West Baltic. Tellus, 30, 272–283 (1978a)CrossRefGoogle Scholar
  38. 38.
    Simons, T. J.: Generation and propagation of downwelling fronts. J. Phys. Oceanogr., 8, 571–581 (1978b)CrossRefGoogle Scholar
  39. 39.
    Simons, T. J.: Circulation models of lakes and inland seas. Can. Bull. Fish. Aquat., Sci., 203, 1–146 (1980)Google Scholar
  40. 40.
    Stocker, T. and Hutter, K.: A model for topographic Rossby waves in channels and lakes. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, Zürich, 76 (1985)Google Scholar
  41. 41.
    Stocker, T. and Hutter, K.: One-dimensional models for topographic Rossby waves in elongated basins on the f-plane. J. Fluid Mech., 70, 435–459 (1986)CrossRefGoogle Scholar
  42. 42.
    Stocker, T. and Hutter, K.: Topographic waves in channels and lakes on the f-plane. Lecture Notes on Coastal and Estuarine Studies Nr 21, Springer Verlag, Berlin etc. 176 p (1987a)Google Scholar
  43. 43.
    Stocker, T. and Hutter, K.: Topographic Rossby waves in rectangular basins. J. Fluid Mech., 185, 107–120 (1987b)CrossRefGoogle Scholar
  44. 44.
    Stocker, T. and Hutter, K.: Qualitative aspects of topographic waves in closed basins, gulfs and channels. In: Modeling Marine Systems, I. (A. M. Davies, ed.) CRC-Press, 255–289 (1990)Google Scholar
  45. 45.
    Stocker, T. and Johnson, E. R.: Topographic waves in open domains. Part II. Bay modes and resonances, J. Fluid Mech., 200, 77–93 (1989)Google Scholar
  46. 46.
    Stocker, T. and Johnson, E. R.: The trapping and scattering of topographic waves by estuaries and headlands. J. Fluid Mech., 222, 501–524 (1991)CrossRefGoogle Scholar
  47. 47.
    Trösch, J.: Finite element calculation of topographic waves in lakes. Proceedings of 4th International Conference on Applied Numerical Modeling, Tainan, Taiwan. 1986. Edited Han-Min, Hsio, Yo Li Chon, Shu Yi Wang, ad Sheng Jii Hsien, Vol. 63 of Science and Technology Series, 307-311 (1986)Google Scholar
  48. 48.
    Wang, D. P. and Mooers C. N. K.: Coastal trapped waves in a continously stratified ocean. J. Phys. Oceanogr., 6, 853–863 (1976)CrossRefGoogle Scholar
  49. 49.
    Wenzel, M.: Interpretation der Wirbel im Bornholm becken durch topographische Rossby Wellen in einem Kreisbecken. Diplomarbeit, Christian Albrechts Universität Kuel. 52 pp. (1978)Google Scholar
  50. 50.
    Willmott, A. J. and Johnson, E. R.: Topographic waves in a rotating stratifies basin Geophy. Astrophys. Fluid Dynamics, 45, 71–87 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kolumban Hutter
    • 1
    Email author
  • Yongqi Wang
    • 2
  • Irina P. Chubarenko
    • 3
  1. 1.c/o Versuchsanstalt für Wasserbau Hydrologie und Glaziologie ETH-ZentrumETH ZürichZürichSwitzerland
  2. 2.Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany
  3. 3.P.P. Shirshov Institute of OceanologyRussian Academy of SciencesKaliningradRussia

Personalised recommendations