Advertisement

k-Level Crossing Minimization Is NP-Hard for Trees

  • Martin Harrigan
  • Patrick Healy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6552)

Abstract

The k-level crossing minimization problem for graphs has received much interest in the graph drawing literature. In this paper we focus on the special case of trees. We show that the 2-level crossing minimization problem for trees where the order of the vertices on one level is fixed is solvable in quadratic time. We also show that the k-level crossing minimization problem for trees for an arbitrary number of levels is NP-Hard. This result exposes a source of difficulty for algorithm designers that compounds earlier results relating to the 2-level crossing minimization problem for graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albacea, E.: A Linear Algorithm for Bipartite Drawing with Minimum Edge Crossings of Complete Binary Trees. Philippine Computing Journal 1(1), 1–5 (2006)Google Scholar
  2. 2.
    Bastert, O., Matuszewski, C.: Layered Drawings of Digraphs. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 87–120. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Chung, F.: On Optimal Linear Arrangements of Trees. Computers and Mathematics with Applications 10(1), 43–60 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Demestrescu, C., Finocchi, I.: Breaking Cycles for Minimizing Crossings. Journal of Experimental Algorithmics 6(2) (2001)Google Scholar
  5. 5.
    Eades, P., Wormald, N.: Edge Crossings in Drawings of Bipartite Graphs. Algorithmica 11(4), 379–403 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eschbach, T., Günther, W., Drechsler, R., Becker, B.: Crossing Reduction by Windows Optimization. In: Kobourov, S., Goodrich, M. (eds.) GD 2002. LNCS, vol. 2528, pp. 285–294. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Garey, M., Johnson, D.: Crossing Number is NP-complete. SIAM Journal on Algebraic and Discrete Methods 4(3), 312–316 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Matuszewski, C., Schönfeld, R., Molitor, P.: Using Sifting for k-Layer Straightline Crossing minimization. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 217–224. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Muñoz, X., Unger, W., Vrťo, I.: One Sided Crossing Minimization is NP-Hard for Sparse Graphs. In: Kobourov, S., Goodrich, M. (eds.) GD 2002. LNCS, vol. 2528, pp. 115–123. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Shahrokhi, F., Sýkora, O., Székely, L., Vrťo, I.: On Bipartite Drawings and the Linear Arrangement Problem. SIAM Journal on Computing (SICOMP) 30(6), 1773–1789 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Shiloach, Y.: A Minimum Linear Arrangement Algorithm for Undirected Trees. SIAM Journal on Computing (SICOMP) 8(3), 422–430 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understanding of Hierarchical Systems. IEEE Transactions on Systems, Man, and Cybernetics 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Harrigan
    • 1
  • Patrick Healy
    • 2
  1. 1.Complex & Adaptive Systems LaboratoryUniversity College DublinIreland
  2. 2.Dept. of Computer Science & Information SystemsUniversity of LimerickIreland

Personalised recommendations