Advertisement

Integrative Mechanobiology of Growth and Architectural Development in Changing Mechanical Environments

  • B. Moulia
  • C. Der Loughian
  • R. Bastien
  • O. Martin
  • M. Rodríguez
  • D. Gourcilleau
  • A. Barbacci
  • E. Badel
  • G. Franchel
  • C. Lenne
  • P. Roeckel-Drevet
  • J. M. Allain
  • J. M. Frachisse
  • E. de Langre
  • C. Coutand
  • N. Fournier-Leblanc
  • J. L. Julien
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 9)

Abstract

Mechanosensitive control of plant growth is a major process shaping how terrestrial plants acclimate to the mechanical challenges set by wind, self-weight, and autostresses. Loads acting on the plant are distributed down to the tissues, following continuum mechanics. Mechanosensing, though, occurs within the cell, building up into integrated signals; yet the reviews on mechanosensing tend to address macroscopic and molecular responses, ignoring the biomechanical aspects of load distribution to tissues and reducing biological signal integration to a “mean plant cell.” In this chapter, load distribution and biological signal integration are analyzed directly. The Sum of Strain Sensing model S 3 m is then discussed as a synthesis of the state of the art in quantitative deterministic knowledge and as a template for the development of an integrative and system mechanobiology.

Keywords

Shoot Apical Meristem Secondary Growth Wind Load Tissue Element Mechanotransduction Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Almeras T, Fournier M (2009) Biomechanical design and long-term stability of trees: morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J Theor Biol 256:370–381PubMedCrossRefGoogle Scholar
  2. Alvarez-Buylla ER, Benitez M, Balleza D, Chaos A, Espinosa-Soto C, Padilla-Longoria P (2007) Gene regulatory network models for plant development. Curr Opin Plant Biol 10:83–91PubMedCrossRefGoogle Scholar
  3. Ancelin P, Courbaud B, Fourcaud T (2004) Development of an individual tree-based mechanical model to predict wind damage within forest stands. For Ecol Manag 203:101–121CrossRefGoogle Scholar
  4. Arteca JM, Arteca RN (1999) A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol 39:209–219PubMedCrossRefGoogle Scholar
  5. Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491PubMedCrossRefGoogle Scholar
  6. Barbacci A, Constant T, Nepveu G (2009) Theoretical and experimental study of a mechanical model describing the trunk behaviour of mature beech trees (Fagus sylvatica L.) under the static loading of the crown. Trees Struct Funct 23:1137–1147Google Scholar
  7. Baskin TI (2006) Ultradian growth oscillations in organs: physiological signal or noise? In: Mancuso S (ed) Rhythms in plants. Springer, BerlinGoogle Scholar
  8. Boudaoud A (2010) An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci 15:353–360PubMedCrossRefGoogle Scholar
  9. Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389PubMedCrossRefGoogle Scholar
  10. Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluška F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:513–519CrossRefGoogle Scholar
  11. Coutand C (2010) Mechanosensing and thigmomorphogenesis, a physiological and biomechanical point of view. Plant Sci 179:168–182. doi: 10.1016/j.plantsci.2010.05.001 CrossRefGoogle Scholar
  12. Coutand C, Moulia B (2000) Biomechanical study of the effect of a controlled bending on tomato stem elongation: local strain sensing and spatial integration of the signal. J Exp Bot 51:1825–1842PubMedCrossRefGoogle Scholar
  13. Coutand C, Julien JL, Moulia B, Mauget JC, Guitard D (2000) Biomechanical study of the effect of a controlled bending on tomato stem elongation: global mechanical analysis. J Exp Bot 51:1813–1824PubMedCrossRefGoogle Scholar
  14. Coutand C, Martin L, Leblanc-Fournier N, Decourteix M, Julien JL, Moulia B (2009) Strain mechanosensing quantitatively controls diameter growth and PtaZFP2 gene expression in poplar. Plant Physiol 151:1–10CrossRefGoogle Scholar
  15. Coutand C, Chevolot M, Rowe N, Lacointe A, Scotti I (2010) Mechanosensing of stem bending and its interspecific variability in five neotropical rainforest species. Ann Bot 105:341–347. doi: 10.1093/aob/mcp286 PubMedCrossRefGoogle Scholar
  16. de Langre E (2008) Effects of wind on plants. Annu Rev Fluid Mech 40:141–168CrossRefGoogle Scholar
  17. Delus V, Lesnino G, Wessolly L (2004) Diagnostic de tenue mécanique de l’arbre: Test de traction, premières applications en France. PHM Rev Hort 461:1–5Google Scholar
  18. Ding JP, Pickard B (1993) Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J 3:713–720PubMedCrossRefGoogle Scholar
  19. Dupont S, Brunet Y (2008) Impact of forest edge shape on tree stability: a large-eddy simulation study. Forestry 81:299–315CrossRefGoogle Scholar
  20. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteopor Int 13:688–700CrossRefGoogle Scholar
  21. Fluch S, Olmo CC, Tauber S, Stierschneider M, Kopecky D, Reichenauer TG, Matuníková I (2008) Transcriptomic changes in wind-exposed poplar leaves are dependent on developmental stage. Planta 228:757–764PubMedCrossRefGoogle Scholar
  22. Foethke D, Makushok T, Brunner D, Nédélec F (2009) Force- and length-dependent catastrophe activities explain interphase microtubule organization in fission yeast. Mol Syst Biol 5:241PubMedCrossRefGoogle Scholar
  23. Fourcaud T, Zhang X, Stokes A, Lambers H, Korner C (2008) Plant growth modelling and applications: the increasing importance of plant architecture in growth models. Ann Bot 101:1053–1063PubMedCrossRefGoogle Scholar
  24. Fournier M, Stokes A, Coutand C, Fourcaud T, Moulia B (2006) Tree biomechanics and growth strategies in the context of forest functional ecology. In: Herrel A, Speck T, Rowe N (eds) Ecology and biomechanics: a biomechanical approach to the ecology of animals and plants. CRC Taylor and Francis, Boca Raton, pp 1–33CrossRefGoogle Scholar
  25. Gardiner B, Byrne K, Hale S, Kamimura K, Mitchell S, Peltola H, Ruel JC (2008) A review of mechanistic modelling of wind damage risk to forests. Forestry 81:447–463CrossRefGoogle Scholar
  26. Godin C, Sinoquet H (2005) Structural–functional plant modelling. New Phytol 166:705–708PubMedCrossRefGoogle Scholar
  27. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adpatationist program. Proc R Soc Lond B 205:581–598PubMedCrossRefGoogle Scholar
  28. Green PB (1999) Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am J Bot 86:1059–1076PubMedCrossRefGoogle Scholar
  29. Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655PubMedCrossRefGoogle Scholar
  30. Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734PubMedCrossRefGoogle Scholar
  31. Hejnowicz Z (1997) Graviresponses in herbs and trees: a major role for the redistribution of tissue and growth stresses. Planta 203:S136–S146PubMedCrossRefGoogle Scholar
  32. Hepworth DG, Vincent JFV (1999) The growth response of the stems of genetically modified tobacco plants (Nicotiana tabacum ‘Samsun’) to flexural stimulation. Ann Bot 83:39–43CrossRefGoogle Scholar
  33. Holbrook MN, Putz FE (1989) Influence of neighbors on tree form: effects of lateral shade and prevention of sway on the allometry of Liquidambar styraciflua (sweet gum). Am J Bot 76:1740–1749CrossRefGoogle Scholar
  34. Jaffe M, Biro R, Bridle K (1980) Thigmomorphogenesis: calibration of the parameters of the sensory function in beans. Physiol Plant 49:410–416CrossRefGoogle Scholar
  35. Jaffe MJ, Leopold AC, Staples RC (2002) Thigmo responses in plants and fungi. Am J Bot 89:375–382PubMedCrossRefGoogle Scholar
  36. Jaouen G, Alméras T, Coutand C, Fournier M (2007) How to determine sapling buckling risk with only a few measurements. Am J Bot 94:1583–1593PubMedCrossRefGoogle Scholar
  37. Leblanc-Fournier N, Coutand C, Crouzet J, Brunel N, Lenne C, Moulia B, Julien JL (2008) Jr-ZFP2, encoding a Cys2/His2-type transcription factor, is involved in the early stages of the mechano-perception pathway and specifically expressed in mechanically stimulated tissues in woody plants. Plant Cell Environ 31:715–726PubMedCrossRefGoogle Scholar
  38. Lee D, Polisensky DH, Braam J (2005) Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. New Phytol 165:429–444PubMedCrossRefGoogle Scholar
  39. Legay JM (1997) L’experience et le modèle, un discours sur la méthode. Quae Editions, Paris, FranceGoogle Scholar
  40. Martin L, Leblanc-Fournier N, Azri W, Lenne C, Henry C, Coutand C, Julien JL (2009) Characterization and expression analysis under bending and other abiotic factors of PtaZFP2, a poplar gene encoding a Cys2/His2 zinc finger protein. Tree Physiol 29:125–136PubMedCrossRefGoogle Scholar
  41. Martin L, Leblanc-Fournier N, Julien JL, Moulia B, Coutand C (2010) Acclimation kinetics of physiological and molecular responses of plants to multiple mechanical loadings. J Exp Bot 61:2403–2412. doi: 10.1093/jxb/erq069 PubMedCrossRefGoogle Scholar
  42. Mattheck C, Bethge K (1998) The structural optimization of trees. Naturwissenschaften 85:135–140CrossRefGoogle Scholar
  43. McMahon TA (1973) Size and shape in biology. Elastic criteria impose limits on biological proportions, and consequently on metabolic rates. Science 179:1201–1204PubMedCrossRefGoogle Scholar
  44. McMaugh SJ, Lyon BR (2003) Real-time quantitative RT-PCR assay of gene expression in plant roots during fungal pathogenesis. Biotechniques 34:982–986PubMedGoogle Scholar
  45. Mechanics (2010) Britannica Student Library. Ultimate Reference Suite. Encycloaedia Britannica, ChicagoGoogle Scholar
  46. Meng SX, Lieffers VJ, Reid DEB, Rudnicki M, Silins U, Jin M (2006) Reducing stem bending increases the height growth of tall pines. J Exp Bot 57:3175–3182PubMedCrossRefGoogle Scholar
  47. Merret R, Moulia B, Hummel I, Cohen D, Dreyer E, Bogeat-Triboulot B (2010) Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism. BMC Biol 8:18PubMedCrossRefGoogle Scholar
  48. Monshausen GB, Gilroy S (2009) Feeling green: mechanosensing in plants. Trends Cell Biol 19:228–235PubMedCrossRefGoogle Scholar
  49. Moulia B (2000) Leaves as shell structures: double curvature, autostresses and minimal mechanical energy constraints on leaf rolling in grasses. J Plant Growth Regul 19:19–30PubMedGoogle Scholar
  50. Moulia B, Combes D (2004) Thigmomorphogenetic acclimation of plants to moderate winds greatly affects height structure in field-gown alfalfa (Medicago sativa L.), an indeterminate herb. Comp Biochem Physiol A Mol Integr Physiol 137:77Google Scholar
  51. Moulia B, Fournier M (1997) Mechanics of the maize leaf: a composite beam model of the midrib. J Mater Sci 32:2771–2780CrossRefGoogle Scholar
  52. Moulia B, Fournier M (2009) The power and control of movements in plants: a plant biomechanics and system biology view. J Exp Bot 60:461–486PubMedCrossRefGoogle Scholar
  53. Moulia B, Fournier-Djimbi M (1997) Optimal mechanical design of plant stems: the models behind the allometric power laws. In: Jeronimidis G, Vincent JFV (eds) Plant biomechanics. University of Reading Press, Reading, England, pp 43–55Google Scholar
  54. Moulia B, Fournier M, Guitard D (1994) Mechanics and form of the maize leaf: in vivo qualification of the flexural behaviour. J Mater Sci 29:2359–2366CrossRefGoogle Scholar
  55. Moulia B, Coutand C, Lenne C (2006) Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture. Am J Bot 93:1477–1489PubMedCrossRefGoogle Scholar
  56. Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago, IlGoogle Scholar
  57. Niklas KJ (1998) The influence of gravity and wind on land plant evolution. Rev Paleobot Palynol 102:1–14CrossRefGoogle Scholar
  58. Niklas KJ, Spatz H.-C (2004) Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proceedings of the National Academy of Sciences, USA 101:15661–15663Google Scholar
  59. Peyronnet R, Haswell ES, Barbier-Brygoo H, Frachisse JM (2008) AtMSL9 and AtMSL10: sensors of plasma membrane tension in Arabidopsis roots. Plant Signal Behav 3:726–729PubMedCrossRefGoogle Scholar
  60. Prusinkiewicz P, Rolland-Lagan AG (2006) Modeling plant morphogenesis. Curr Opin Plant Biol 9:83–88PubMedCrossRefGoogle Scholar
  61. Py C, de Langre E, Moulia B (2006) A frequency lock-in mechanism in the interaction between wind and crop canopies. J Fluid Mech 568:425–449CrossRefGoogle Scholar
  62. Quine C, Gardiner B (2002) Climate change impacts: storms. For Commun Bull 125:41–51Google Scholar
  63. Rodriguez M, de Langre E, Moulia B (2008) A scaling law for the effects of architecture and allometry on tree vibration modes suggests a biological tuning to modal compartmentalization. Am J Bot 95:1523–1537PubMedCrossRefGoogle Scholar
  64. Sato K, Adachi T, Matsuoa M, Tomita Y (2005) Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells. J Biomech 38:1895–1901PubMedCrossRefGoogle Scholar
  65. Schrieffer JL, Warden SJ, Saxon LK, Robling AG, Turner CH (2005) Cellular accommodation and the response of bone to mechanical loading. J Biomech 38:1838–1845CrossRefGoogle Scholar
  66. Sellier D, Fourcaud T (2009) Crown structure and wood properties: influence on tree sway and response to high winds. Am J Bot 96:885–896PubMedCrossRefGoogle Scholar
  67. Sellier D, Brunet Y, Fourcaud T (2008) A numerical model of tree aerodynamic response to a turbulent airflow. Forestry 81:279–297CrossRefGoogle Scholar
  68. Sierra de Grado R, Pando V, Martinez-Zurimendi P, Penalvo A, Bascones E, Moulia B (2008) Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness. Tree Physiol 28:835–846PubMedGoogle Scholar
  69. Spatz H-C, Speck O (2002) Oscillation frequencies of tapered plant stems. Am J Bot 89:1–11PubMedCrossRefGoogle Scholar
  70. Speck T, Spatz HC, Vogellener D (1990) Contribution to the biomechanics of plants I. Stabilities of plant stems with strengthening elements of different cross-sections against weight and wind forces. Bot Acta 103:111–122Google Scholar
  71. Stress (2010) Encyclopaedia Britannica. Ultimate Reference Suite. Encyclopaedia Britannica, ChicagoGoogle Scholar
  72. Stull RB (2007) An introduction to boundary layer meteorology. Springer, BerlinGoogle Scholar
  73. Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 8:9–14PubMedCrossRefGoogle Scholar
  74. Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476PubMedCrossRefGoogle Scholar
  75. Telewski FW, Pruyn ML (1998) Thigmomorphogenesis: a dose response to flexing in Ulmus americana seedlings. Tree Physiol 18:65–68PubMedGoogle Scholar
  76. Traas J, Moneger F (2010) Systems biology of organ initiation at the shoot apex. Plant Physiol 152:420–427PubMedCrossRefGoogle Scholar
  77. Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ (2007) Universal physical responses to stretch in the living cell. Nature 447:592–595PubMedCrossRefGoogle Scholar
  78. Weber’s Law (2010) Encyclopaedia Britannica. Ultimate Reference Suite. Encyclopaedia Britannica, ChicagoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • B. Moulia
    • 1
  • C. Der Loughian
    • 1
    • 2
  • R. Bastien
    • 1
    • 3
  • O. Martin
    • 1
  • M. Rodríguez
    • 1
    • 2
  • D. Gourcilleau
    • 1
  • A. Barbacci
    • 1
  • E. Badel
    • 1
  • G. Franchel
    • 1
  • C. Lenne
    • 1
  • P. Roeckel-Drevet
    • 1
  • J. M. Allain
    • 4
  • J. M. Frachisse
    • 5
  • E. de Langre
    • 2
  • C. Coutand
    • 1
  • N. Fournier-Leblanc
    • 1
  • J. L. Julien
    • 1
  1. 1.UMR_A547 Physique et Physiologie Intégratives de l’Arbre Fruitier et Forestier, Domaine de CrouelleINRA, Université Blaise PascalClermont FerrandFrance
  2. 2.LadHyX (Hydro-Dynamics), Ecole Polytechnique-CNRSPalaiseauFrance
  3. 3.Non-Linear PhysicsMaterial and Complex Systems, CNRS UMR 7057Paris cedex 13France
  4. 4.LMS (Solid Mechanics), Ecole Polytechnique-CNRSPalaiseauFrance
  5. 5.Institut des Sciences du Végétal, CNRS, UPR 2355, Integrated ion transportGif-sur-Yvette CedexFrance

Personalised recommendations