Cell Cycle Regulation by microRNAs in Stem Cells

Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS)

Abstract

The ability to self-renew and to differentiate into at least one-cell lineage defines a stem cell. Self-renewal is a process by which stem cells proliferate without differentiation. Proliferation is achieved through a series of highly regulated events of the cell cycle. MicroRNAs (miRNAs) are a class of short noncoding RNAs whose importance in these events is becoming increasingly appreciated. In this chapter, we discuss the role of miRNAs in regulating the cell cycle in various stem cells with a focus on embryonic stem cells. We also present the evidence indicating that cell cycle-regulating miRNAs are incorporated into a large regulatory network to control the self-renewal of stem cells by inducing or inhibiting differentiation. In addition, we discuss the function of cell cycle-regulating miRNAs in cancer.

References

  1. Alvarez-Saavedra E, Horvitz HR (2010) Many families of C. elegans microRNAs are not essential for development or viability. Curr Biol 20:367–373PubMedCentralPubMedCrossRefGoogle Scholar
  2. Baek D et al (2008) The impact of microRNAs on protein output. Nature 455:64–71PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bartel DP (2009) MicroRNAs target recognition and regulatory functions. Cell 136:215–233PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ben-Porath I et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507PubMedCentralPubMedCrossRefGoogle Scholar
  5. Berthet C, Kaldis P (2007) Cell-specific responses to loss of cyclin-dependent kinases. Oncogene 26:4469–4477PubMedCrossRefGoogle Scholar
  6. Bickenbach JR (1981) Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res 60:1611–1620PubMedCrossRefGoogle Scholar
  7. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191PubMedCrossRefGoogle Scholar
  8. Brons IG et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195PubMedCrossRefGoogle Scholar
  9. Card DA et al (2008) Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 28:6426–6438PubMedCrossRefGoogle Scholar
  10. Cherington PV, Smith BL, Pardee AB (1979) Loss of epidermal growth factor requirement and malignant transformation. Proc Natl Acad Sci USA 76:3937–3941PubMedCrossRefGoogle Scholar
  11. Creighton CJ et al (2010) Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One 5:e9637PubMedCentralPubMedCrossRefGoogle Scholar
  12. Dalton S (2009) Exposing hidden dimensions of embryonic stem cell cycle control. Cell Stem Cell 4:9–10PubMedCentralPubMedCrossRefGoogle Scholar
  13. Forman JJ, Coller HA (2010) The code within the code: microRNAs target coding regions. Cell Cycle 9:1533–1541PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fornari F et al (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27:5651–5661PubMedCrossRefGoogle Scholar
  15. Friedman RC et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105PubMedCrossRefGoogle Scholar
  16. Fujii-Yamamoto H et al (2005) Cell cycle and developmental regulations of replication factors in mouse embryonic stem cells. J Biol Chem 280:12976–12987PubMedCrossRefGoogle Scholar
  17. Galardi S et al (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282:23716–23724PubMedCrossRefGoogle Scholar
  18. Gregory RI et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240PubMedCrossRefGoogle Scholar
  19. Han J et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027PubMedCrossRefGoogle Scholar
  20. Han J et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901PubMedCrossRefGoogle Scholar
  21. Harmes DC, DiRenzo J (2009) Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses? J Mammary Gland Biol Neoplasia 14:19–27PubMedCentralPubMedCrossRefGoogle Scholar
  22. He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406PubMedCrossRefGoogle Scholar
  23. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358PubMedCrossRefGoogle Scholar
  24. Hutvágner G et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838PubMedCrossRefGoogle Scholar
  25. Ivanovska I et al (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28:2167–2174PubMedCentralPubMedCrossRefGoogle Scholar
  26. Jirmanova L et al (2002) Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 21:5515–5528PubMedCrossRefGoogle Scholar
  27. Kim VN, Han J, Siomi MC (2009a) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139PubMedCrossRefGoogle Scholar
  28. Kim YK et al (2009b) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37:1672–1681PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184PubMedCentralPubMedCrossRefGoogle Scholar
  30. le Sage C et al (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26:3699–3708PubMedCrossRefGoogle Scholar
  31. Lee RC, Feinbaum RL, Ambros VT (1993) C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  32. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545PubMedCrossRefGoogle Scholar
  33. Liu C et al (2010) Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6:433–444PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  35. Lund E et al (2004) Nuclear export of microRNA precursors. Science 303:95–98PubMedCrossRefGoogle Scholar
  36. Marson A et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–533PubMedCentralPubMedCrossRefGoogle Scholar
  37. Massagué J (2004) G1 cell-cycle control and cancer. Nature 432:298–306PubMedCrossRefGoogle Scholar
  38. Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463:621–626PubMedCentralPubMedCrossRefGoogle Scholar
  39. Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133:3733–3744PubMedCrossRefGoogle Scholar
  40. Miska EA et al (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3:e215PubMedCentralPubMedCrossRefGoogle Scholar
  41. Murchison EP et al (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102:12135–12140PubMedCrossRefGoogle Scholar
  42. Ohnuma S et al (1999) p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell 99:499–510PubMedCrossRefGoogle Scholar
  43. Osawa M et al (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245PubMedCrossRefGoogle Scholar
  44. Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci USA 71:1286–1290PubMedCrossRefGoogle Scholar
  45. Parker SB et al (1995) p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267:1024–1027PubMedCrossRefGoogle Scholar
  46. Pasquinelli AE et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89PubMedCrossRefGoogle Scholar
  47. Petrocca F et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272–286PubMedCrossRefGoogle Scholar
  48. Qi J et al (2009) microRNAs regulate human embryonic stem cell division. Cell Cycle 8:3729–3741PubMedCentralPubMedCrossRefGoogle Scholar
  49. Qu Q et al (2010) Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 12:31–40PubMedCentralPubMedCrossRefGoogle Scholar
  50. Reinhart BJ et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefGoogle Scholar
  51. Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  52. Rossant J (2008) Stem cells and early lineage development. Cell 132:527–531PubMedCrossRefGoogle Scholar
  53. Sabapathy K et al (1997) Regulation of ES cell differentiation by functional and conformational modulation of p53. EMBO J 16:6217–6229PubMedCrossRefGoogle Scholar
  54. Savatier P et al (1996) Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12:309–322PubMedGoogle Scholar
  55. Selbach M et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63PubMedCrossRefGoogle Scholar
  56. Stead E et al (2002) Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene 21:8320–8333PubMedCrossRefGoogle Scholar
  57. Stein GS et al (2006) An architectural perspective of cell-cycle control at the G1/S phase cell-cycle transition. J Cell Physiol 209:706–710PubMedCrossRefGoogle Scholar
  58. Tesar PJ et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199PubMedCrossRefGoogle Scholar
  59. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  60. Ullah Z et al (2008) Differentiation of trophoblast stem cells into giant cells is triggered by p57/Kip2 inhibition of CDK1 activity. Genes Dev 22:3024–3036PubMedCrossRefGoogle Scholar
  61. Ventura A et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886PubMedCentralPubMedCrossRefGoogle Scholar
  62. Voorhoeve PM et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124:1169–1181PubMedCrossRefGoogle Scholar
  63. Wang Y, Blelloch R (2009) Cell cycle regulation by MicroRNAs in embryonic stem cells. Cancer Res 69:4093–4096PubMedCentralPubMedCrossRefGoogle Scholar
  64. Wang Y et al (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39:380–385PubMedCentralPubMedCrossRefGoogle Scholar
  65. Wang Y et al (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40:1478–1483PubMedCentralPubMedCrossRefGoogle Scholar
  66. Yi R et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016PubMedCrossRefGoogle Scholar
  67. Yi R et al (2008) A skin microRNA promotes differentiation by repressing “stemness”. Nature 452:225–229PubMedCrossRefGoogle Scholar
  68. Zhao C et al (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16:365–371PubMedCentralPubMedCrossRefGoogle Scholar
  69. Zhao C et al (2010) MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci USA 107:1876–1881PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.The Institute of Molecular MedicinePeking UniversityBeijingChina
  2. 2.The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Center for Reproductive SciencesUniversity of California San FranciscoSan FranciscoUSA
  4. 4.Department of UrologyUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations