Skip to main content

Experimental Systems to Explore Life Origin: Perspectives for Understanding Primitive Mechanisms of Cell Division

  • Chapter
  • First Online:
Cell Cycle in Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS))

Abstract

Compartmentalization is a necessary element for the development of any cell cycle and the origin of speciation. Changes in shape and size of compartments might have been the first manifestation of development of so-called cell cycles. Cell growth and division, processes guided by biological reactions in modern cells, might have originated as purely physicochemical processes. Modern cells use enzymes to initiate and control all stages of cell cycle. Protocells, in the absence of advanced enzymatic machinery, might have needed to rely on physical properties of the membrane. As the division processes could not have been controlled by the cell’s metabolism, the first protocells probably did not undergo regular cell cycles as we know it in cells of today. More likely, the division of protocells was triggered either by some inorganic catalyzing factor, such as porous surface, or protocells divided when the encapsulated contents reached some critical concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen WV, Ponnamperuma C (1967) A possible prebiotic synthesis of monocarboxylic acids. Curr Mod Biol 1:24–28

    CAS  PubMed  Google Scholar 

  • Apel CL, Deamer DW, Mautner MN (2002) Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim Biophys Acta 1559:1–9

    Article  CAS  PubMed  Google Scholar 

  • Berclaz N, Muller M, Walde P, Luisi PL (2001) Growth and transformation of vesicles studied by ferritin labeling and cryotransmission electron microscopy. J Phys Chem B 105:1056–1064

    Article  CAS  Google Scholar 

  • Blochliger E, Blocher M, Walde P, Luisi PL (1998) Matrix effect in the size distribution of fatty acid vesicles. J Phys Chem B 102:10383–10390

    Article  Google Scholar 

  • Chakrabarti AC, Breaker RR, Joyce GF, Deamer DW (1994) Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J Mol Evol 39:555–559

    Article  CAS  PubMed  Google Scholar 

  • Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476

    Article  CAS  PubMed  Google Scholar 

  • Chen IA, Szostak JW (2004) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Z, Luisi PL (2003) Coexistence and mutual competition of vesicles with different size distributions. J Phys Chem B 107(39):10940–10945

    Article  CAS  Google Scholar 

  • Deamer DW (1985) Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317:792–794

    Article  CAS  Google Scholar 

  • Deamer DW, Pashley RM (1989) Amphiphilic components of carbonaceous meteorites. Orig Life Evol Biosph 19:21–33

    Article  CAS  PubMed  Google Scholar 

  • Delaye L, Lazcano A (2005) Prebiological evolution and the physics of the origin of life. Phys Life Rev 2(1):47–64

    Article  PubMed  Google Scholar 

  • Hanczyc MH, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL (1998) About various definitions of life. Orig Life Evol Biosph 28:613–622

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL, Stano P, Rasi S (2004) A possible route to prebiotic vesicle reproduction. Artif Life 10:297–308

    Article  PubMed  Google Scholar 

  • Luisi PL, Walde P, Oberholzer T (1999) Lipid vesicles as possible intermediates in the origin of life. Curr Opin Colloid Interface Sci 4:33

    Article  CAS  Google Scholar 

  • McCollom TM, Ritter G, Simoneit BT (1999) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 29:153–166

    Article  CAS  PubMed  Google Scholar 

  • Morbidelli A et al (2000) Source regions and time scales for the delivery of water to earth. Meteorit Planet Sci 35(6):1309–1320

    Article  CAS  Google Scholar 

  • Oberholzer T, Luisi PL (2002) The use of liposomes for constructing cell models. J Biol Phys 28:733–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rasi S, Mavelli F, Luisi PL (2003) Cooperative micelle binding and matrix effect in oleate vesicle formation. J Phys Chem B 107:14068–14076

    Article  CAS  Google Scholar 

  • Schidlowski M (2001) Carbon Isotopes as biogeochemical recorders of life over 3.8 Ga of earth history: evolution of a concept. Precambrian Res 106:117–134

    Article  CAS  Google Scholar 

  • Schopf JW (1994) New evidence of the antiquity of life. Orig Life Evol Biosph 24(2–4)

    Google Scholar 

  • Segre D, Ben-Eli D, Deamer DW, Lancet D (2001) The lipid world. Orig Life Evol Biosph 31:119–145

    Article  CAS  PubMed  Google Scholar 

  • Takakura K, Sugawara T (2004) Membrane dynamics of a myelin-like giant multilamellar vesicle applicable to a self-reproducing system. Langmuir 20:3832–3834

    Article  CAS  PubMed  Google Scholar 

  • Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    Article  CAS  PubMed  Google Scholar 

  • Walde P (2006) Surfactant assemblies and their various possible roles for the origin(S) of life. Orig Life Evol Biosph 36:109–150

    Article  CAS  PubMed  Google Scholar 

  • Wick R, Luisi PL (1996) Enzyme-containing liposomes can endogenously produce membrane-constituting lipids. Chem Biol 3:277–285

    Article  CAS  PubMed  Google Scholar 

  • Yuen GU, Kvenvolden KA (1973) Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature 246:301–303

    Article  CAS  Google Scholar 

  • Yuen GU, Lawless JG, Edelson EHJ (1981) Quantification of monocarboxylic acids from a spark discharge synthesis. Mol Evol 17:43–47

    Article  CAS  Google Scholar 

  • Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131(15):5705–5713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Adamala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adamala, K., Luisi, P.L. (2011). Experimental Systems to Explore Life Origin: Perspectives for Understanding Primitive Mechanisms of Cell Division. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_1

Download citation

Publish with us

Policies and ethics