Advertisement

Abstract

The rate of literature publication in life sciences is growing fast, and researchers in the bioinformatics and knowledge discovery fields have been studying how to use the existing literature to discover novel knowledge or generate novel hypothesis. Existing literature-based discovery methods and tools use text-mining techniques to extract non-specified relationships between two concepts. This paper presents a new approach to literature-based discovery, which adopts semantic web techniques to measure the relevance between two relationships with specified types that involve a particular entity. We extract pairs of highly relevant relationships, which we call relationship associations, from semantic graphs representing scientific papers. These relationship associations can be used to help researchers generate scientific hypotheses or create their own semantic graphs for their papers. We present the results of experiments for extracting relationship associations from 392 semantic graphs representing MEDLINE papers.

Keywords

Relationship associations Semantic relationships Semantic matching Semantic web Semantic graph Life sciences Literature-based knowledge discovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marrs, K.A., Novak, G.: Just-in-Time Teaching in Biology: Creating an Active Learner Classroom Using the Internet. Cell Biology Education 3, 49–61 (2004)CrossRefGoogle Scholar
  2. 2.
    King, T.J., Roberts, M.B.V.: Biology: A Functional Approach. Thomas Nelson and Sons (1986) ISBN 978-0174480358 Google Scholar
  3. 3.
    Langley, P.: The Computational Support of Scientific Discovery. International Journal of Human-Computer Studies 53, 393–410 (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Racunas, S.A., Shah, N.H., Albert, I., Fedoroff, N.V.: HyBrow: a Prototype System for Computer-Aided Hypothesis Evaluation. Bioinformatics 20 (suppl. 1), i257–i264 (2004)CrossRefGoogle Scholar
  5. 5.
    Swanson, D.R., Smalheiser, N.R.: An Interactive System for Finding Complementary Literatures: a Stimulus to Scientific Discovery. Artificial Intelligence 91, 183–203 (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    Weeber, M., Kors, J.A., Mons, B.: Online Tools to Support Literature-Based Discovery in the Life Sciences. Briefings in Bioinformatics 6(3), 277–286 (2005)CrossRefGoogle Scholar
  7. 7.
    Hristovski, D., Peterlin, B., Mitchell, J.A., Humphrey, S.M.: Using Literature-Based Discovery to Identify Disease Candidate Genes. International Journal of Medical Informatics 74(2-4), 289–298 (2005)CrossRefGoogle Scholar
  8. 8.
    Srinivasan, P.: Text Mining: Generating Hypotheses from MEDLINE. JASIST 55(5), 396–413 (2004)CrossRefGoogle Scholar
  9. 9.
    Hallett, C., Scott, D., Power, R.: Composing Questions through Conceptual Authoring. Computational Linguistics 33(1), 105–133 (2007)CrossRefGoogle Scholar
  10. 10.
    Natarajan, J., Berrar, D., Hack, C.J., Dubitzky, W.: Knowledge Discovery in Biology and Biotechnology Texts: A Review of Techniques, Evaluation Strategies, and Applications. Critical Reviews in Biotechnology 25(1), 31–52 (2005)CrossRefGoogle Scholar
  11. 11.
    Kraines, S., Guo, W., Kemper, B., Nakamura, Y.: EKOSS: A Knowledge-User Centered Approach to Knowledge Sharing, Discovery, and Integration on the Semantic Web. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 833–846. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Kraines, S., Makino, T., Mizutani, H., Okuda, Y., Shidahara, Y., Takagi, T.: Transforming MeSH into DL for Creating Computer-Understandable Knowledge Statements (in preparation)Google Scholar
  13. 13.
    Aoyama, S., Kamiya, R.: Cyclical Interactions between Two Outer Doublet Microtubules in Split Flagellar Axonemes. Biophys J. 89(5), 3261–3268 (2005)CrossRefGoogle Scholar
  14. 14.
    Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: Proceedings of the ACM Workshop on Data Cleaning, Record Linkage and Object Identification, Washington, DC (August 2003)Google Scholar
  15. 15.
    Racer Systems GmbH & Co. KG, http://www.racer-systems.com
  16. 16.
    Guo, W., Kraines, S.: Explicit Scientific Knowledge Comparison Based on Semantic Description Matching. In: American Society for Information Science and Technology 2008 Annual Meeting, Columbus, Ohio (2008)Google Scholar
  17. 17.
    OWL Web Ontology Language Guide, http://www.w3.org/TR/owl-guide/
  18. 18.
    Kraines, B., Guo, W.: Using Human Authored Description Logics ABoxes as Concept Models for Natural Language Generation. In: American Society for Information Science and Technology 2009 Annual Meeting, Vancouver, British Columbia, Canada (2009)Google Scholar
  19. 19.
    Morita, Y., Shingyoji, C.: Effects of Imposed Bending on Microtubule Sliding in Sperm Flagella. Current Biology 14(23), 2113–2118 (2004)CrossRefGoogle Scholar
  20. 20.
    Nakano, I., Kobayashi, T., Yoshimura, M., Shingyoji, C.: Central-Pair-Linked Regulation of Microtubule Sliding by Calcium in Flagellar Axonemes. Journal of Cell Science 116(8), 1627–1636 (2003)CrossRefGoogle Scholar
  21. 21.
    Yanagisawa, H., Kamiya, R.: A Tektin Homologues is Decreased in Chlamydomonas Mutants Lacking an Axonemal Inner-Arm Dynein. Molecular Biology of the Cell 15(5), 2105–2115 (2004)CrossRefGoogle Scholar
  22. 22.
    Sakakibara, H.M., Kunioka, Y., Yamada, T., Kamimura, S.: Diameter Oscillation of Axonemes in Sea-Urchin Sperm Flagella. Biophys J. 86(1 Pt 1), 346–352 (2004)CrossRefGoogle Scholar
  23. 23.
    Swanson, D.R.: Fish oil, Raynaud’s Syndrome, and Undiscovered Public Knowledge. Perspectives in Biology and Medicine 30, 7–18 (1986)CrossRefGoogle Scholar
  24. 24.
    Swanson, D.R.: Migraine and Magnesium: Eleven Neglected Connections. Perspectives in Biology and Medicine 31, 526–557 (1988)CrossRefGoogle Scholar
  25. 25.
    Swanson, D.R.: Somatomedin C and Arginine: Implicit Connections between Mutually Isolated Literatures. Perspectives in Biology and Medicine 33(2), 157–179 (1990)CrossRefGoogle Scholar
  26. 26.
    Swanson, D.R., Smalheiser, N.R., Bookstein, A.: Information Discovery from Complementary Literatures: Categorizing Viruses as Potential Weapons. JASIST 52(10), 797–812 (2001)CrossRefGoogle Scholar
  27. 27.
    Gordon, M.D., Lindsay, R.K.: Toward Discovery Support Systems: A Replication, Re-Examination, and Extension of Swanson’s Work on Literature-Based Discovery of a Connection between Raynaud’s and Fish Oil. JASIST 47(2), 116–128 (1996)CrossRefGoogle Scholar
  28. 28.
    Lindsay, R.K., Gordon, M.D.: Literature-Based Discovery by Lexical Statistics. JASIST 50(7), 574–587 (1999)CrossRefGoogle Scholar
  29. 29.
    Weeber, M., Vos, R., Klein, H., de Jong-van den Berg, L.T.W., Aronson, A.R., Molema, G.: Generating Hypotheses by Discovering Implicit Associations in the Literature: A Case Report of a Search for New Potential Therapeutic Uses for Thalidomide. J. American Medical Informatics Association 10(3), 252–259 (2003)CrossRefGoogle Scholar
  30. 30.
    Hristovski, D., Stare, J., Peterlin, B., Dzeroski, S.: Supporting Discovery in Medicine by Association Rule Mining in Medline and UMLS. Medinfo 10(Pt2), 1344–1348 (2001)Google Scholar
  31. 31.
    Guo, W., Kraines, S.B.: Mining relationship associations from knowledge about failures using ontology and inference. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 617–631. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Weisen Guo
    • 1
  • Steven B. Kraines
    • 1
  1. 1.Science Integration Program (Human), Department of Frontier Sciences and Science Integration, Division of Project CoordinationThe University of TokyoKashiwaJapan

Personalised recommendations