Algebraic Multigrid for Industrial Semiconductor Device Simulation

  • Tanja Clees
  • Klaus Stüben
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 35)


In this paper, strategies for solving systems of partial differential equations by algebraic multigrid are discussed. In particular, a general framework for so-called point-based approaches is outlined. Several applications from industrial semiconductor process and device simulation have been investigated, and detailed results for two industrially relevant devices are presented. It is shown that this framework allows to construct robust and fast algebraic multigrid approaches even for cases, where iterative one-level solvers of the type commonly used in such applications exhibit bad convergence or even fail.


Multigrid Method Device Simulation Doping Profile Primary Matrix Concrete Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruge, J.W., Stäben, K.: Algebraic Multigrid (AMG). In: McCormick, S.F. (ed.): Multigrid Methods. Frontiers in Applied Mathematics, Vol. 3. SIAM, Philadelphia (1987) 73–130Google Scholar
  2. 2.
    Stäben, K.: An Introduction to Algebraic Multigrid. In: Trottenberg, U., Oosterlee, C.W., Schuller, A.: Multigrid. Academic Press, London San Diego (2001) 413–532Google Scholar
  3. 3.
    Stüben, K.: A review of algebraic multigrid. Journal of Computational and Applied Mathematics 128 (2001) 281–309MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Stäben, K., Clees, T.: SAMG Release 21b, User’s Manual. Fraunhofer SCAI, St. Augustin, Germany (2002)Google Scholar
  5. 5.
    Füllenbach, T., Stüben, K.: Algebraic Multigrid for Selected PDE Systems. In: Elliptic and Parabolic Problems, Rolduc and Gaeta 2001. Proceedings of the 4th European Conference. World Scientific, New Jersey London (2002) 399–410Google Scholar
  6. 6.
    Oeltz, D.: Algebraische Mehrgittermethoden für Systeme partieller Differentialgleichungen. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität, Bonn (2001)Google Scholar
  7. 7.
    Griebel, M., Oeltz, D., Schweitzer, M.A.: An algebraic multigrid method for linear elasticity. SIAM J. Sci. Comp., submittedGoogle Scholar
  8. 8.
    Füllenbach, T., Stüben, K., Mijalkovie, S.: Application of an algebraic multi-grid solver to process simulation problems. In: Proceedings SISPAD 2000, International Conference on Simulation of Semiconductor Processes and Devices. IEEE, Piscataway, NJ (2000) 225–228Google Scholar
  9. 9.
    Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien New York (1990)CrossRefzbMATHGoogle Scholar
  10. 10.
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien New York (1984)CrossRefGoogle Scholar
  11. 11.
    Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer, Wien New York (1986)Google Scholar
  12. 12.
    Kerkhoven, T.: On the Scharfetter-Gummel box method. In: Selberherr, S., Stippel, H., Strasser, E. (eds.): Simulation of Semiconductor Devices and Processes, Vol. 5. Springer, Wien New York (1993) 237–240CrossRefGoogle Scholar
  13. 13.
    Fuhrmann, J., Gärtner, K.: Incomplete factorization and linear multigrid algorithms for the semiconductor device equations. In: Beauwens, R., de Groen, P. (eds.): Proceedings of the IMACS International Symposium on Iterative Methods in Linear Algebra. Elsevier, Amsterdam (1992) 493–503Google Scholar
  14. 14.
    Taurus, Release 2001.4. Synopsys Inc., Mountainview, CA (2002)Google Scholar
  15. 15.
    Sze, S.M. (ed.): Modern Semiconductor Device Physics. Wiley, New York Chichester (1998)Google Scholar
  16. 16.
    Huang, X., et al.: Sub-50 nm p-channel FinFET. IEEE Transactions on Electron Devices 48 (2001) 880–886CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tanja Clees
    • 1
  • Klaus Stüben
    • 1
  1. 1.Fraunhofer SCAISchloss BirlinghovenSt. AugustinGermany

Personalised recommendations