Advertisement

Macroscopic Models of Fluids with Microstructure

  • Noel J. Walkington
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 35)

Abstract

Liquid crystals, fluids containing elastic particles, and polymer fluids, all exhibit non-trivial macroscopic behavior due to interactions occurring at micro/mesoscopic scales. Frequently the particles are small enough to be influenced by Brownian motion so the classical equations of mechanics must be coupled to appropriate Fokker Planck equation(s). Currently the coupling between the Fokker Planck equations modeling the microstructure and the macroscopic equations of mechanics is poorly understood. In this talk I’ll present some of the microscopic models appearing in the physics literature and the systems of pde’s that arise when they are coupled to the equations of mechanics.

Keywords

Liquid Crystal Deformation Gradient Nematic Liquid Crystal Fokker Planck Equation Discontinuous Galerkin Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bedford. Theories of immiscible and structured mixtures.Int. J. Engng. Sci.,2(8):863–960, 1983.MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge—Kantorovich mass transfer problem.preprint,November, 1998.Google Scholar
  3. 3.
    A. N. Beris and B. J. Edwards.Thermodynamics of Flowing Systems. Number 36 in Oxford Engineering Science Series. Oxford, 1994.Google Scholar
  4. 4.
    G. Caginalp. An analysis of a phase field model of a free boundary.Archive for Rational Mechanics and Analysis,92:205–245, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    G. Caginalp. Stefan and Hele—Shaw type models a asymptotic limits of phase field equations.Physics ReviewA, 39:887–896, 1989.MathSciNetGoogle Scholar
  6. 6.
    P. G. de Gennes.The Physics Of Liquid Crystals.Oxford, 1974.Google Scholar
  7. 7.
    R. J. DiPerna and P. L. Lions. Ordinary differential equations, transport theory and Sobolev spaces.Inventiones Mathematicae,98:511–547, 1989.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Doi and S. F. Edwards.The Theory of Polymer Dynamics.Number 73 in Internatiional Series of Mongraphs on Physics. Oxford, 1986.Google Scholar
  9. 9.
    J. Ericksen. Conservation laws for liquid crystals.Trans. Soc. Rheol.,5:22 34, 1961.MathSciNetGoogle Scholar
  10. 10.
    J. Ericksen. Nilpotent energies in liquid crystal theory.Archive for Rational Mechanics and Analysis,10:189 196, 1962.Google Scholar
  11. 11.
    G. Fix. Phase field methods for free boundary problems. In B. Fasano and M. Primicerio, editorsFree Boundary Problems,pages 580–589. Pitman, London, 1983.Google Scholar
  12. 12.
    M. G. Forest, Q. Wang, and H. Zhou. Exact banded patterns from a doi-marrucci-greco model of nematic liquid crystal polymers.Phys. Fluids,12(3):490–498, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. G. Forest, Q. Wang, and H. Zhou. Homogeneous pattern selection and director instabilities of nematic liquid crystal polymers induced by elongational flows.Phys. Fluids,12(3):490–498, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    F. C. Frank. On the theory of liquid crystals.Discuss. Faraday Soc.,28:19–28, 1958.CrossRefGoogle Scholar
  15. 15.
    M. Frechet. Sur la distance de deux lois de probabilite.Comptes Rendus Acad. Sci,244:689–692, 1957.MathSciNetzbMATHGoogle Scholar
  16. 16.
    R. Jordan, D. Kinderlehrer, and F. Otto. Dynamics of the Fokker-Planck equation. Phase Transitions to appear, 1999.Google Scholar
  17. 17.
    D. Kinderlehrer and N. J. Walkington. Approximation of parabolic equations using the Wasserstein metric.MMAN Math. Model. Numer. Anal.,33(4):837–852, 1999.MathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Leslie. Some constitutive equations for liquid crystals.Archive for Rational Mechanics and Analysis,28:265–283, 1968.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    F. Leslie. Theory of flow phenomenum in liquid crystals. In W. Brown, editorThe Theory of Liquid Crystals,volume 4, pages 1–81, New York, 1979. Academic Press.Google Scholar
  20. 20.
    F. H. Lin and C. Liu. Nonparabolic dissipative systems, modeling the flow of liquid crystals.Comm. Pure Appl. Math.,XLVIII(5):501–537, 1995.Google Scholar
  21. 21.
    F. H. Lin and C. Liu. Global existence of solutions for the Ericksen Leslie-system.Archive for Rational Mechanics and Analysis,accepted, 1998.Google Scholar
  22. 22.
    P. L. Lions.Mathemaitcial Topics in Fluid MechanicsVolume 1:Incompressible Models. Oxford Press, Oxford, U.K., 1996.Google Scholar
  23. 23.
    C. Liu and N. J. Walkington. Approximation of liquid crystal flows.SIAM Journal on Numerical Analysis,37(3):725–741, Feb. 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    C. Liu and N. J. Walkington. An Eulerian description of fluids containing visco-elastic particles.Arch. Ration. Mech. Anal.,159(3):229–252, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    C. Liu and N. J. Walkington. Mixed methods for the approximation of liquid crystal flows.Math. Modelling and Numer. Anal.,36(2):205–222, March/April 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    C. W. Oseen. The theory of liquid crystals.Trans. Faraday Soc.,29:883–889, 1933.CrossRefGoogle Scholar
  27. 27.
    F. Otto. Dynamics of labyrinthine pattern formantion in magnetic fluids.Archive for Rational Mechanics and Analysis,141:63–103, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    F. Otto. The geometry of dissipative evolution equations: the porous medium equation.Comm. Partial Differential Equations,26(1–2):101–174, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    A. M. Sonnet and E. G. Virga. Dynamics of dissipative ordered fluids.Phys. Rev. E,64(031705):1–10, 2001.Google Scholar
  30. 30.
    N. J. Walkington. Convergence of the discontinuous Galerkin method for discontinuous solutions.SIAM Journal on Numerical Analysis,submitted, June 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Noel J. Walkington
    • 1
  1. 1.Department of MathematicsCarnegie Mellon UniversityPittsburghPA

Personalised recommendations