Advertisement

TOR pp 53-72 | Cite as

Nutrient Signaling Through TOR Kinases Controls Gene Expression and Cellular Differentiation in Fungi

  • J. R. Rohde
  • M. E. Cardenas
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 279)

Abstract

The TOR kinases were first identified in Saccharomyces cerevisiae as the targets of the immunosuppressive drug rapamycin. Subsequent studies employing rapamycin as a tool in yeast have given us insight into the structure and function of the TOR kinases, as well as the biological role of the TOR signaling program in transmitting nutrient signals to promote cell growth. One of the major advances from this area has been in defining an unexpected role for TOR signaling in the regulation of transcription. The identification of target genes subject to regulation by TOR has provided a platform for the dissection of the signaling events downstream of the TOR kinases. Studies aimed at understanding TOR-regulated transcription have begun to shed light on how TOR signaling cooperates with other signaling programs. In addition, the TOR pathway regulates the developmental program of pseudohyphal differentiation in concert with highly conserved MAP kinase and PKA signaling programs. Remarkably, rapamycin also blocks filamentation in a number of important human and plant pathogens and the mechanism of rapamycin action is conserved in Candida albicans and Cryptococcus neoformans. The antimicrobial properties of less immunosuppressive analogs of rapamycin hold promise for the development of an effective antifungal therapy.

Keywords

Cryptococcus Neoformans Nutrient Signaling Signaling Program Nitrogen Catabolite Repression Pseudohyphal Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcon, CM., M.E. Cardenas, and J. Heitman. 1996. Mammalian RAFT1 kinase domain provides rapamycin-sensitive TOR function in yeast Genes Dev. 10: 279–288PubMedCrossRefGoogle Scholar
  2. Alarcon, CM., J. Heitman, and M.E. Cardenas. 1999. Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast Mol. Biol. Cell. 10: 2531–2546Google Scholar
  3. Andrade, M.A., C Petosa, S.I. O’Donoghue, C.W. Muller, and P. Bork. 2001. Comparison of ARM and HEAT protein repeats J. Mol. Bio.l 309: 1–18Google Scholar
  4. Barbet, N.C, U. Schneider, S.B. Helliwell, I. Stansfield, M.E Tuite, and M.N. Hall. 1996. TOR controls translation initiation and early Gl progression in yeast Mol. Biol. Cell 7: 25–42Google Scholar
  5. Beck, T. and M.N. Hall. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors Nature 402: 689–92PubMedCrossRefGoogle Scholar
  6. Bertram, P.G., J.H. Choi, J. Carvalho, W. Ai, C Zeng, T.F. Chan, and X.F. Zheng. 2000. Tripartite regulation of Gln3p by TOR, Ure2p and phosphatases J. Biol. Chem. 275: 35727–35733CrossRefGoogle Scholar
  7. Bertram, P.G., J.H. Choi, J. Carvalho, T.F. Chan, W Ai, and X.F. Zheng. 2002. Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3 Mo.l Cell. Biol. 22: 1246–52Google Scholar
  8. Blinder, D., P.W. Coschigano, and B. Magasanik. 1996. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae J. Bacteriol 178: 4734–4736Google Scholar
  9. Brown, E.J., M.W. Albers, T.B. Shin, K. Ichikawa, CT. Keith, W.S. Lane, and S.L. Schreiber. 1994. A mammalian protein targeted by G1-arresting rapamycin-recep-tor complex Nature 369: 756–759PubMedCrossRefGoogle Scholar
  10. Brunn, G.J., P. Fadden, T.A.J. Haystead, and J. J.C Lawrence. 1997. The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-pro motif and is activated by antibodies to a region near its COOH terminus J. Biol. Chem. 272: 32547–32550CrossRefGoogle Scholar
  11. Cafferkey, R., P.R. Young, M.M. McLaughlin, D.J. Bergsma, Y. Koltin, G.M. Sathe, L. Faucette, W.-K. Eng, R.K. Johnson, and G.P. Livi. 1993. Dominant missense muta tions in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity Mol. Cell. Biol. 13: 6012–6023Google Scholar
  12. Cardenas, M.E., N.S. Cutler, M.C. Lorenz, C.J.D. Como, and J. Heitman. 1999. The TOR signaling cascade regulates gene expression in response to nutrients Genes &Dev. 13: 3271–3279CrossRefGoogle Scholar
  13. Cardenas, M.E. and J. Heitman. 1995. FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity EMBO J. 14: 5892–5907PubMedGoogle Scholar
  14. Carvalho, J., P.G. Bertram, S.R. Wente, and X.F.S. Zheng. 2001. Phosphorylation Regulates the Interaction between Gln3p and the Nuclear Import Factor Srp1p* J. Biol. Chem. 276: 25359–25365CrossRefGoogle Scholar
  15. Chan, T.-E, J. Carvalho, L. Riles, and X.E Zheng. 2000. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR) Proc. Natl. Acad. Sci., USA 97: 13227–13232PubMedCrossRefGoogle Scholar
  16. Chen, J., X.-F. Zheng, E.J. Brown, and S.L. Schreiber. 1995. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue Proc. Natl. Acad. Sci., USA 92: 4947–4951PubMedCrossRefGoogle Scholar
  17. Choi, J., J. Chen, S.L. Schreiber, and J. Clardy. 1996. Structure of the FKBP12-ra-pamycin complex interacting with the binding domain of human FRAP Science 273: 239–242Google Scholar
  18. Christie, G.R., E. Hajduch, HS. Hundal, C.G. Proud, and P.M. Taylor. 2002. Intracellular sensing of amino acids in Xenopus leavis oocytes stimulates p70 S6 kinase in a TOR-dependent manner J. Biol. Chem. 277:9952–9957CrossRefGoogle Scholar
  19. Coschigano, P.W. and B. Magasanik. 1991. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to gluthathione S-transferases Mol. Cell. Biol. 11: 822–832Google Scholar
  20. Courchesne, W.E. and B. Magasanik. 1988. Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes J. Bacteriol 170: 708–713Google Scholar
  21. Crespo, J.L., K. Daicho, T. Ushimaru, and M.N. Hall. 2001. The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae J. Biol. Chem. 276: 34441–34444CrossRefGoogle Scholar
  22. Cruz, M.C, L.M. Cavallo, J.M. Gorlach, G. Cox, J.R. Perfect, M.E. Cardenas, and J. Heitman. 1999. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans Mol. Cell. Biol. 19:4101–4112Google Scholar
  23. Cruz, M.C, A.L. Goldstein, J. Blankenship, M.D. Poeta, J.R. Perfect, J.H. McCusker, Y.L. Bennani, M.E. Cardenas, and J. Heitman. 2001. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12 dependent inhibition TOR Antimicrob. Agents Chemother. 45: 3162–3170CrossRefGoogle Scholar
  24. Cutler, N.S., J. Heitman, and M.E. Cardenas. 1999. TOR kinase homologs function in a signal transduction pathway that is conserved from yeast to mammals Mol. Cell. Endocrinol. 155: 135–142CrossRefGoogle Scholar
  25. Cutler, N.S., X. Pan, J. Heitman, and M.E. Cardenas. 2001. The TOR signal transduction cascade controls cellular differentiation in response to nutrients Mol. Biol. Cell 12:4103–4113Google Scholar
  26. Dennis, P.B., A. Jaeschke, M. Saitoh, B. Fowler, S.C. Kozma, and G. Thomas. 2001. Mammalian TOR: a homeostatic ATP sensor Science 294: 1102–1105PubMedCrossRefGoogle Scholar
  27. Di Como, C.J. and K.T. Arndt. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases Genes & Dev. 10: 1904–1916Google Scholar
  28. Fang, Y., M. Vilella-Bach, R. Bachmann, A. Flanigan, and J. Chen. 2001. Phosphatidic acid-mediated mitogenic activation of mTOR signaling Science 294: 1942–1945PubMedCrossRefGoogle Scholar
  29. Ferrara, A., R. Cafferkey, and G.P. Livi. 1992. Cloning and sequence analysis of a ra-pamycin-binding protein-encoding gene (RBP1) from Candida albicans Gene 113: 125–127Google Scholar
  30. Gimeno, C.J., P.O. Ljungdahl, C.A. Styles, and G.R. Fink. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS Cell 68: 1077–1090PubMedCrossRefGoogle Scholar
  31. Gorner, W., E. Durchschlag, J. Wolf, E.L. Brown, G. Ammerer, H. Ruis, and C. Schul-ler. 2002. Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor EMBO J. 21: 135–44PubMedCrossRefGoogle Scholar
  32. Hardwick, J.S., EG. Kuruvilla, J.K. Tong, A.F. Shamji, and S.L. Schreiber. 1999. Ra-pamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins Proc. Natl. Acad. Sci., USA 96:14866–70PubMedCrossRefGoogle Scholar
  33. Hartman, M.E., M. Villela-Bach, J. Chen, and G.G. Freund. 2001. Frap-dependent serine phosphorylation of IRS-1 inhibits IRS-1 tyrosine phosphorylation Biochem. Biophys. Res. Commun. 280: 776–81CrossRefGoogle Scholar
  34. Heitman, J., N.R. Mowa, and M.N. Hall. 1991a. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast Science 253: 905–909PubMedCrossRefGoogle Scholar
  35. Heitman, J., N.R. Mowa, P.C. Hiestand, and M.N. Hall. 1991b. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae Proc. Natl. Acad. Sci. U S A 88: 1948–52CrossRefGoogle Scholar
  36. Helliwell, S.B., P. Wagner, J. Kunz, M. Deuter-Reinhard, R. Henriquez, and M.N. Hall. 1994. Tor1 and Tor2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast Mol. Biol. Cell 5: 105–118Google Scholar
  37. Jacinto, E., B. Guo, K.T. Arndt, T. Schmelzle, and M.N. Hall. 2001. TIP41 Interacts with TAP42 and negatively regulates the TOR signaling pathway Molecular Cell 8: 1017–1026PubMedCrossRefGoogle Scholar
  38. Jiang, Y. and J.R. Broach. 1999. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast EMBO J. 18: 2782–2792PubMedCrossRefGoogle Scholar
  39. Komeili, A., K.P. Wedaman, E.K. O’Shea, and T. Powers. 2000. Mechanism of metabolic control: target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors J. Cell Biol. 151: 863–878CrossRefGoogle Scholar
  40. Kunz, J., R. Henriquez, U. Schneider, M. Deuter-Reinhard, N.R. Mowa, and M.N. Hall. 1993. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression Cell 73: 585–596PubMedCrossRefGoogle Scholar
  41. Kunz, J., U. Schneider, I. Howald, A. Schmidt, and M.N. Hall. 2000. HEAT repeats mediate plasma membrane localization of Tor2p in yeast J. Biol. Chem. 275: 37011–20CrossRefGoogle Scholar
  42. Lengeler, K.B., R.C. Davidson, C. D’Souza, T.Harashima, W.-C. Shen, R Wang, X. Pan, M. Waugh, and J. Heitman. 2000. Signal transduction cascades regulating fungal development and virulence Microbiol. Mol. Biol. Rev. 64: 746–785CrossRefGoogle Scholar
  43. Lo, H.-J., J.R. Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti, and G.R. Fink. 1997. Nonfilamentous C. albicans mutants are avirulent Cell 90: 939–949PubMedCrossRefGoogle Scholar
  44. Lorenz, M.C. and J. Heitman. 1995. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin J. Biol. Chem. 270: 27531–27537CrossRefGoogle Scholar
  45. Lorenz, M.C. and J. Heitman. 1998. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae EMBO J. 17: 1236–1247PubMedCrossRefGoogle Scholar
  46. Luke, M.M., ED. Seta, C.J.D. Como, H. Sugimoto, R. Kobayashi, and K.T. Arndt. 1996. The SAPs, a new family of proteins, associate and function positively with the SIT4 phosphatase. Mol. Cell. Biol. 16: 2744–2755PubMedGoogle Scholar
  47. Noda, T. and Y. Ohsumi. 1998. TOR, a phosphatidylinositol kinase homologue, controls autophagy in yeast J. Biol. Chem. 273: 3963–3966CrossRefGoogle Scholar
  48. Oldham, S., J. Montagne, T. Radimerski, G. Thomas, and E. Hafen. 2000. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin Genes Dev. 14: 2689–2694PubMedCrossRefGoogle Scholar
  49. Pan, X., T.Harashima, and J. Heitman. 2000. Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae Curr. Opin. Microbiol. 3: 567–572CrossRefGoogle Scholar
  50. Peterson, R.T, P.A. Beal, M.J. Comb, and S.L. Schreiber. 2000. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions J. Biol. Chem. 275: 7416–23CrossRefGoogle Scholar
  51. Powers, T. and P. Walter. 1999. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae Mol. Biol. Cell 10: 987–1000Google Scholar
  52. Rohde, J., J. Heitman, and M.E. Cardenas. 2001. The Tor kinases link nutrient sensing to cell growth J. Biol. Chem. 276: 9583–9586CrossRefGoogle Scholar
  53. Sabatini, D.M., H. Erdjument-Bromage, M. Lui, P. Tempst, and S.H. Snyder. 1994. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs Cell 78: 35–43PubMedCrossRefGoogle Scholar
  54. Schmidt, A., T. Beck, A. Roller, J. Kunz, and M.N. Hall. 1998. The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease EMBO J. 17: 6924–6931PubMedCrossRefGoogle Scholar
  55. Schmidt, A. J. Kunz, and M.N. Hall. 1996. TOR2 is required for organization of the actin cytoskeleton in yeast Proc. Natl. Acad. Sci., USA 93: 13780–13785CrossRefGoogle Scholar
  56. Stan, R., M.M. McLaughlin, R.T. Cafferkey, R.K. Johnson, M. Rosenberg, and G.P. Livi. 1994. Interaction between FKBP12-Rapamycin and TOR involves a conserved serine residue J. Biol. Chem. 269: 32027–32030Google Scholar
  57. Stanbrough, M., D.W. Rowen, and B. Magasanik. 1995. Role of the GATA factors Gln3p and Nillp of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes Proc. Natl. Acad. Sci. USA 92: 9450–9454CrossRefGoogle Scholar
  58. van Zyl, W., W. Huang, A.A. Sneddon, M. Stark, S. Camier, M. Werner, C. Marck, A. Sentenac, and J.R. Broach. 1992. Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae Mol. Cell. Biol. 12: 4946–59Google Scholar
  59. Vezina, C, A. Kudelski, and S.N. Sehgal. 1975. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing Streptomycete and isolation of the active principle. J. Antibiot. 28: 721–726PubMedCrossRefGoogle Scholar
  60. Werner-Washburne, M., E. Braun, G.C. Johnston, and R.A. Singer. 1993. Stationary phase in the yeast Saccharomyces cerevisiae Microbiol. Rev. 57: 383–401Google Scholar
  61. White, T.C., K.A. Marr, and R.A. Bowden. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382–402PubMedGoogle Scholar
  62. Xu, S., D.A. Falvey, and M.C. Brandriss. 1995. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae Mol. Cell. Biol. 15: 2321–2330Google Scholar
  63. Zaragoza, D., A. Ghavidel, J. Heitman, and M.C. Schultz. 1998. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway Mol. Cell. Biol. 18: 4463–4470Google Scholar
  64. Zheng, X.-E, D. Fiorentino, J. Chen, G.R. Crabtree, and S.L. Schreiber. 1995. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin Cell 82: 121–130Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. R. Rohde
    • 1
  • M. E. Cardenas
    • 1
  1. 1.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA

Personalised recommendations