The Integration of Recognition and Cleavage: X-Ray Structures of Pre-Transition State Complex, Post-Reactive Complex, and the DNA-Free Endonuclease

  • A. Grigorescu
  • M. Horvath
  • P. A. Wilkosz
  • K. Chandrasekhar
  • J. M. Rosenberg
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 14)


DNA has been selected as the biological information storage molecule for many reasons; one of which is its stability. The rate of spontaneous hydrolysis of DNA(at 24 ° C and pH 7.4) was estimated at 5.7×10−14 S−1 (Bunton et al.1960; Kumamoto et al. 1956; Serpersu et al. 1987); more recently, Radzicka and Wolfenden have estimated this value as 1.7xl0−13 S−1. (Radzicka and Wolfenden 1995).This corresponds to an estimated half-life of 130,000 years for a DNA phosphodiester bond in solution, placing DNAhydrolysis among the slowest of biochemical reactions in the absence of enzymes.


Amino Acid Side Chain Major Groove EcoRI Endonuclease Single Hydrogen Bond Sequence Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiken CR, McLaughlin LW, Gumport RI (1991) The highly homologous isoschizomers RsrI enodonuclease and EcoRI endonuclease do not recognize their target sequence identity. J Bioi Chem 266:19070–19078Google Scholar
  2. Alves J, Ruter T, Geiger R, Fliess A, Maass G, Pingoud A (1989) Changing the hydrogenbonding potential in the DNA binding site of EcoRI by site-directed mutagenesis drastically reduces the enzymatic activity, not, however, the preference of this restriction endonuclease for cleavage within the site-GAATTC-. Biochemistry 28:2678–2684PubMedCrossRefGoogle Scholar
  3. Anderson JE (1993) Restriction endonucleases and modification methylases. Curr Opin Struct Biol 3 24–30CrossRefGoogle Scholar
  4. Athanasiadis A, Vlassi M, Kotsifaki D, Tucker PA, Wilson KS, Kokkinidis M (1994) Crystal structure of Pvull endonuclease reveals extensive structural homologies to EcoRV. Nature Struct Biol 1:469–475PubMedCrossRefGoogle Scholar
  5. Bella J, Berman HM (1996) Crystallographic evidence for Ca-H—O=C hydrogen bonds in a collagen triple helix. J Mol Biol 264:734–742PubMedCrossRefGoogle Scholar
  6. Brennan CA, Van Cleve MD, Gumport RI (1986) The effects of base analogue substitutions on the cleavage by the EcoRI restriction endonuclease of octadeoxyribonucleotides containing modified EcoRI recognition sequences. J Biol Chern 261:7270–7278Google Scholar
  7. Bunton CA, Mhala MM, Oldham KG, Vernon CA (1960) The reactions of organic phosphates. 3. The hydrolysis of dimethyl phosphate. J Chern Soc 81:3293–3301CrossRefGoogle Scholar
  8. Carter CW Jr, Kraut J (1974) A proposed model for interaction of polypeptides with RNA. Proc Natl Acad Sci USA 71:283–287PubMedCrossRefGoogle Scholar
  9. Cheng C-Y, Wang S-L (1991) Structure acetate dihydrate. Acta Cryst C47:1734–1736Google Scholar
  10. Cheng X, Balendiran K, Schildkraut I, Anderson JE (1994) Structure of PvuII endonuclease with cognate DNA. EMBO J 13:3927–3935PubMedGoogle Scholar
  11. Chmelikova R, Loub J, Petrjcek V (1986) Structure of manganese(II) sodium dihydrogenphosphite monohydrate. Acta Cryst C42:1281–1283Google Scholar
  12. Choi J (1994) Crystal structure analysis of site-directed mutants of EcoRI enodnuclease complexed to DNA, PhD Thesis, University of PittsburghGoogle Scholar
  13. Church GM, Sussman JL, Kim S-H (1977) Secondary structural complementarity between DNA and proteins. Proc Natl Acad Sci USA74:1458–1462PubMedCrossRefGoogle Scholar
  14. Connolly BA, Eckstein F, Pingoud A (1984) The stereochemical course of the restriction endonuclease EcoRI-catalyzed reaction. J Biol Chern 259:10760–10763Google Scholar
  15. Cudennec Y, Riou A, Gerault Y (1989) Manganese(II) hydrogenphosphate trihydrate. Acta Cryst C45:1411–1412Google Scholar
  16. Derewenda ZS, Lee L, Derewenda U (1995) The occurrence of C-H — O hydrogen bonds in proteins. J Mol Biol 252:248–262PubMedCrossRefGoogle Scholar
  17. Drew HR, Dickerson RE (1981) Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol BioI 151:535–556CrossRefGoogle Scholar
  18. Duan Y, Wilkosz P, Rosenberg JM (1996) Dynamic contributions to the DNA binding entropy of the EcoRI and EcoRVrestriction endonucleases. J Mol Biol 264:546–555PubMedCrossRefGoogle Scholar
  19. Eftink MR, Anusiem AC, Biltonen RL (1983) Enthalpy-entropy compensation and heat capacity changes for protein — ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A.Biochemistry 22:3884–3896PubMedCrossRefGoogle Scholar
  20. Freitag S, Le Trong I, Klumb L, Stayton PS, Stenkamp RE (1997) Structural studies of the streptavidin binding loop. Prot Sci 6:1157–1166CrossRefGoogle Scholar
  21. Fritz A, Kuster W, Alves J (1998) Asn(141) is essential for DNA recognition by EcoRI restriction endonuclease. FEBS Lett 438:66–70PubMedCrossRefGoogle Scholar
  22. Garrett TPJ, Guss JM, Greeman HC (1983) trans-Diaquatetrakis(imidazole)manganese( II) dichloride.Acta Cryst C39:1031–1034Google Scholar
  23. Grable J, Frederick CA, Samudzi C, Jen-Jacobson L, Lesser D, Greene P, Boyer HW, Itakura K, Rosenberg JM (1984) Two-fold symmetry of crystalline DNA-EcoRI endonuclease recognition complexes. J Biomol Struct Dyn 1:1149–1160PubMedCrossRefGoogle Scholar
  24. Hager P, Reich N, Day J, Coch TG, Boyer HW, Rosenberg JM, Greene P (1990) Probing the role of glutamic acid 144 in the EcoRI endonuclease using aspartic acid and gluta mine replacements. J Biol Chern 265:21520–21526Google Scholar
  25. Heitman J, Model P (1990a) Mutants of the EcoRI endonuclease with promiscuous substrate specificity implicate residues involved in substrate recognition. EMBOJ 9(10): 3369–3378Google Scholar
  26. Heitman J, Model P (1990b) Substrate recognition by the EcoRI endonuclease. Proteins 7:185–197PubMedCrossRefGoogle Scholar
  27. leltsch A, Alves J, Maass G, Pingoud A.(1992) On the catalytic mechanism of EcoRI and EcoRV. A detailed proposal based on biochemical results, structural data and molecular modelling. FEBSLett 304:4–8CrossRefGoogle Scholar
  28. Jen-Jacobson L (1995) Structural-perturbation approaches to thermodynamics of sitespecific protein-DNA interactions. In: Johnson ML, Ackers GK (eds) Methods in enzymology, vol 259.Academic Press, San Diego, pp 305–344Google Scholar
  29. Jen-Jacobson L (1997) Protein-DNA recognition complexes: conservation of structure and binding energy in the transition state. Biopolymers 44:153–180PubMedCrossRefGoogle Scholar
  30. Jen-Jacobson L, Engler LE, Ames JT, Kurpiewski, MR, Grigorescu A (2000a) Thermodynamic paramters of specific and nonspecific protein-DNA binding. Supermol Chern 12(2):143 + Special IssueCrossRefGoogle Scholar
  31. Jen-Iacobson L, Engler LE, Jacobson LA (2000b) Structural and thermodynamic strategies for site-specific DNA binding proteins.[erratum appears in Structure Fold Des 2000, Dec 15,8(12):251 following]. Structure 8:1015–1023CrossRefGoogle Scholar
  32. Jen-Jacobson L, Engler LE, Lesser DR, Kurpiewski M R, Yee C, McVerry B (1996) Structural adaptations in the interaction of EcoRI endonuclease with methylated GAATTC sites.EMBO J 15:2870–2882PubMedGoogle Scholar
  33. Jen-Jacobson L, Lesser D, Kurpiewski M (1986) The enfolding arms of EcoRI endonuclease: role in DNA binding and cleavage. Cell 45:619–629PubMedCrossRefGoogle Scholar
  34. Jen-Jacobson L, Lesser DR, Kurpiewski MR (1991) DNA sequence discrimination by EcoRI endonuclese. In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology. Springer, Berlin Heidelberg New York, pp 142–170Google Scholar
  35. Kim Y, Choi J, Grable JC, Greene P, Hager P, Rosenberg JM (1994) Studies on the canonical DNA-EcoRI endonuclease complex and the EcoRI kink. In: Sarma R, Sarma MH (eds) Structural biology: the state of the art. Adenine Press, Schenectady, pp 225–246Google Scholar
  36. Kim YC, Grable JC, Love R, Greene PJ, Rosenberg JM (1990) Refinement of EcoRI endonuclease crystal structure: a revised protein chain tracing. Science 249:1307–1309PubMedCrossRefGoogle Scholar
  37. King K, Benkovic SJ, Modrich P (1989) Glu-111 is required for activation of the DNA cleavage center of EcoRI endonuclease. J Biol Chern 264:11807–11815Google Scholar
  38. Kumamoto J, COX JR, Westheimer FH (1956) J Am Chern Soc 77:4858–4860CrossRefGoogle Scholar
  39. Kumar S, Duan Y, Kollman PA, Rosenberg JM (1994) Molecular-dynamics simulations suggest that the EcoRI kink is an example of molecular strain. J Biomol Str Dyn 12:487–525CrossRefGoogle Scholar
  40. Lesser DR, Grajkowski A, Kurpiewski MR, Koziolkiewicz M, Stec W, Jen-Jacobson L (1992) Stereoselective interaction with chiral phosphorothioates at the central DNA kink of the EcoRI endonuclease-GAATTC complex. J Biol Chern 267:24810–24818Google Scholar
  41. Lesser DR, Kurpiewski MR, Jen-Jacobson L (1990a) The energetic basis of sequence specificity in the interaction of EcoRI endonuclease with DNA.Science 250:776–786PubMedCrossRefGoogle Scholar
  42. Lesser DR, Kurpiewski MR, Jen-Jacobson L (1990b) The energetic basis of specificity in the EcoRI endonuclease-DNA interaction. Science 250:776–786PubMedCrossRefGoogle Scholar
  43. Lesse, DR, Kurpiewski MR, Waters T, Connolly BA, Jen-Jacobson L (1993) Facilitated distortion of the DNA site enhances EcoRI endonuclease-DNA recognition [see comments]. Proc Natl Acad Sci USA 90:7548–7552CrossRefGoogle Scholar
  44. Lightfoot P, Cheetham AK (1987) Structure of manganese(II) trisodium tripolyphosphate dodecahydrate. Acta Cryst C43:4–7Google Scholar
  45. Lis T (1982) Structure of manganese(II) L-Iactate Dihydrate. Acta Cryst B38:937–939Google Scholar
  46. Lis T (1983). Structure of manganses(II) maleate trihydrate, and reeinvestigation of the structure of manganese(II) hydrogen tetrahydrate. Acta Cryst C39:39–41Google Scholar
  47. Lis T (1992) Structure of zinc(II), magnesium(II) and manganese(II) bis(phosphoenolpyruvate) dihydrate. Acta Cryst C48:424–427Google Scholar
  48. Mandel-Gutfreund Y, Margalit H, Jernigan RL, Zhurkin VB (1998) A role for CH—O interactions in protein—DNA recognition. J Mol Biol 277:1129–1140PubMedCrossRefGoogle Scholar
  49. McLaughlin LW, Benseler F, Graeser E, Piel N, Scholtissek S (1987) Effects of functional group changes in the EcoRI recognition site on the cleavage reaction catalyzed by the endonuclease. Biochem 26:7238–7245CrossRefGoogle Scholar
  50. Muir RS, Flores H, Zinder ND, Model P, Soberon X, Heitman J (1997) Temperature-sensitive mutants of the EcoRI endonuclease. J Mol Biol 274:722–737PubMedCrossRefGoogle Scholar
  51. Needels MC, Fried SR, Love R, Rosenberg JM, Boyer H W, Greene PJ (1989) Determinants of EcoRI endonuclease sequence discrimination. Proc Natl Acad Sci USA 86:3579–3583PubMedCrossRefGoogle Scholar
  52. Newman M, Strzelecka T, Dorner LF, Schildkraut I, Aggarwal AK (1994) Structure of restriction endonuclease bamhi phased at 1.95Åresolution by MADanalysis. Structure 2:439–452PubMedCrossRefGoogle Scholar
  53. Oelgeschlager T, Geiger R, Ruter T, Alves J, Fliess A, Pingoud A (1990) Probing the function of individual amino acid residues in the DNAbinding site of the EcoRI restriction endonuclease by analysing the toxicity of genetically engineered mutants. Gene 89:19–27PubMedCrossRefGoogle Scholar
  54. Otwinowski Z, Schevitz RW, Zhang RG, Lawson CL, Ioachimiak A, Marmorstein RQ, Luisi BF, Sigler PB (1988) Crystal structure of trp repressor/operator complex at atomic resolution. Nature 335:321–329PubMedCrossRefGoogle Scholar
  55. Parkinson G, Vojtechnovsky J, Clowney L, Brunger A T, Berman HM (1996) New parameters for the refinement of nucleic acid containing structures. Acta Cryst D52:57–64Google Scholar
  56. Perona JJ, Martin AM (1997a) Conformational transitions and structural deformability of EcoRVendonuclease revealed by crystallographic analysis. J Mol Bioi 273:207–225CrossRefGoogle Scholar
  57. Perona JJ, Martin AM (1997b). Conformational transitions and structural deformability of EcoRV endonuclease revealed by crystallographic analysis. J Mol Biol 273:207–225PubMedCrossRefGoogle Scholar
  58. Perry KM, Fauman EB, Finer-Moore JS, Montfort WR, Maley GF, Maley F, Stroud RM (1990) Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthases. Proteins: Struct Funct Genet 8:315–333CrossRefGoogle Scholar
  59. Pingoud A, Ieltsch A (1997) Recognition and cleavage of DNA by Type-II restriction endonucleases. Eur J Biochem 246:1–22PubMedCrossRefGoogle Scholar
  60. Radzicka A, Wolfenden R (1995) A proficient enzyme. Science 267:90–93PubMedCrossRefGoogle Scholar
  61. Raghunathan S, Chandross RJ, Kretsinger RH, Allison TJ, Penington CT, Rule GS (1994) Crystal structure of human class mu glutathione transferase GSTM2-2. Effects oflattice packing on conformational heterogeneity. J Mol Biol 238:815–832PubMedCrossRefGoogle Scholar
  62. Richardson JS (1981) The anatomy and taxonomy of protein structure. Adv Protein Chern 34:167–339CrossRefGoogle Scholar
  63. Rosenberg JM (199l) Structure and function of restriction endonucleases. Curr Opin Struct Biol 1:104–113Google Scholar
  64. Ross NL, Reynard B, Guyot F (199l) Structure of high-pressure Mn GeO3 ilmenite. Acta Cryst C47:1794–1796Google Scholar
  65. Samudzi CT (1990) Use of the molecular replacement method in structural studies of EcoRI endonuclease, PhD, University of PittsburghGoogle Scholar
  66. Schneider B, Cohen DM, Schleifer L, Srinivasan AR, Olson WK, Berman HM (1993) A systematic method for studying the spatial distribution of water molecules around nucleic acid bases. Biophys J 65:2291–2303PubMedCrossRefGoogle Scholar
  67. Seeman NC, Rosenberg JM, Rich A (1976) Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci USA 73:804–808PubMedCrossRefGoogle Scholar
  68. Serpersu EH, Shortie D, Mildvan AS (1987) Kinetic and magnetic resonance studies of active-site mutants of staphylococcoal nuclease: factors contributing to catalysis. Biochemistry 26:1289–1300PubMedCrossRefGoogle Scholar
  69. Spolar RS, Record MT Jr (1994) Coupling oflocal folding to site-specific binding of proteins to DNA.Science 263:777–784PubMedCrossRefGoogle Scholar
  70. Steitz TA (1990) Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. Q Rev Biophys 23:205–280PubMedCrossRefGoogle Scholar
  71. Tanaka I, Appelt K, Dij KL, White SW, Wilson KS(1984) 3Åresolution structure of a protein with histone-like properties in prokaryotes. Nature 310:376–381PubMedCrossRefGoogle Scholar
  72. Thielking V, Alves J, Fleiss A, Maass G, Pingoud A (1990) Accuracy of the EcoRI endonuclease: binding and cleavage studies with oligodeoxynucleotide substrates containing degenerate recognition sequences. Biochemistry 29:4682–4691PubMedCrossRefGoogle Scholar
  73. Thielking V, Selent U, Kohler E, Wolfes H, Pieper U, Geiger R, Urbanke C, Winkler FK, Pingoud A (1991) Site-directed mutagenesis studies with EcoRV restriction endonuclease to identify regions involved in recognition and catalysis. Biochemistry 30:64166422CrossRefGoogle Scholar
  74. Thomas M, Davis RW(1975) Studies on the cleavage of bacteriophage lambda DNAwith EcoRI restriction endonuclease. J Mol Biol 91:315–328PubMedCrossRefGoogle Scholar
  75. Venclovas C, Siksnys V (1995) Different enzymes with similar structures involved in Mg+2-mediated polynucleotidyl transfer [letter]. Nat Struct Biol 2:838–841PubMedCrossRefGoogle Scholar
  76. Venclovas C, Timinskas A, Siksnys V (1994) Five-stranded beta sheet sandwiched with two alpha-helices: a structural link between restriction endonucleases EcoRI and EcoRV. Proteins 20:279–282PubMedCrossRefGoogle Scholar
  77. Vigil D, Gallagher SC, Trewhella J, Garcia AE (2001) Functional dynamics of the hydrophobic cleft in the N-domain of calmodulin. Biophys J 80:2082–2092PubMedCrossRefGoogle Scholar
  78. Watrob H, Liu W, Chen Y, Bartlett SG, Jen-Jacobson L, Barkley MD (2001) Solution conformation of EcoRI restriction endonuclease changes upon binding of cognate DNA and Mg+2 cofactor. Biochemistry 40:683–692PubMedCrossRefGoogle Scholar
  79. White SW, Appelt K, Wilson KS, Tanaka I (1989) A protein structural motif that bends DNA. Proteins 5:281–288PubMedCrossRefGoogle Scholar
  80. Wilkosz PA, Chandrasekhar K, Rosenberg JM (1995) Preliminary characterization of EcoRI*-DNA Co-crystals: factorial design strategies for oligonucleotide sequences used in protein-DNA cocrystals. Acta Crsyt D 51:938–945CrossRefGoogle Scholar
  81. Winkler FK (1992) Structure and function of restriction endonucleases. Curr Opin Struct Biol 2:93–99CrossRefGoogle Scholar
  82. Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS(1993a) The crystal structure of EcoRVendonuclease and of its complexes with cognate and non cognate DNA.EMBO J 12:1781–1795PubMedGoogle Scholar
  83. Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PO, Petratos K, Wilson KS(1993b) The crystal structure of EcoRVendonuclease and of its complexes with cognate And non-cognate DNA fragments. EMBO J 12:1781–1795PubMedGoogle Scholar
  84. Wolfes H, Alves J, Fliess A, Geiger R, Pingoud A (1986) Site directed mutagenesis experiments suggest that Glu 111, Glu 144 and Arg 145 are essential for endonucleolytic activity of EcoRI. Nucleic Acids Res 14:9063–9080PubMedCrossRefGoogle Scholar
  85. Yanofsky SD, Love R, McClarin JA, Rosenberg JM, Boyer HW, Greene PJ (1987) Clustering of null mutations in the EcoRI endonuclease. Proteins 2:273–282PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. Grigorescu
    • 1
  • M. Horvath
    • 1
  • P. A. Wilkosz
    • 1
  • K. Chandrasekhar
    • 1
  • J. M. Rosenberg
    • 1
  1. 1.Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations