Interface Reduction for the Stokes Equation

  • Boris N. Khoromskij
  • Gabriel Wittum
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 36)


In this chapter we discuss an asymptotically optimal Schur complement reduction for the 2D stationary Stokes equation in polygonal domains. This equation may be applied to model a slow flow of viscous incompressible fluid and also in iterative methods for solving the Navier-Stokes and the nonstationary Stokes problems. Efficient finite element multigrid method for the Stokes and Navier-Stokes equations by using transforming smoothers was developed in [187, 189] see also recent results in [26].


Stokes Equation Biharmonic Equation Polygonal Domain Trace Space Interface Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Boris N. Khoromskij
    • 1
  • Gabriel Wittum
    • 2
  1. 1.Max-Planck-Institut für Mathematik in den NaturwissenschaftenLeipzigGermany
  2. 2.Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR)Universität HeidelbergHeidelbergGermany

Personalised recommendations