Advertisement

Population balance modeling of synthesis of nanoparticles in aerosol flame reactors

  • Stavros Tsantilis
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 39)

Summary

Population balance models typically employed in simulations of synthesis of nanoparticles in aerosol flame reactors are presented. The main focus of the present study is on sectional techniques for a variety of particle formation and growth mechanisms involving gas phase and surface chemical reactions, coagulation, and sintering. A moving sectional model is described and compared with other models including a detailed two dimensional sectional method. Conditions of applicability of the above mentioned numerical model are also investigated.

Keywords

Aerosol Flow Population Balance Model Primary Particle Size Distribution Pivot Technique Aerosol Flow Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bat81]
    Batterham, R. J., Hall, J. S., and Barton, G. (1981) Pelletizing Kinetics and Simulation of Full Scale Balling Circuits. Proceedings, 3rd International Symposium on Agglomeration, Nurnberg, Federal Republic of GermanyA136.Google Scholar
  2. [Cha00]
    Chaoul, O. (2000) Aerosol Process Simulation by Fixed and Moving Sectional Techniques. M. Sc. Thesis, Department of Chemical Engineering, University of Cincinnati, Cincinnati, OH 45221-0171, USA.Google Scholar
  3. [Fr85]
    Frenklach, M. (1985) Dynamics of Discrete Distribution for Smoluchowski Coagulation Model. J. Colloid Interface Sci.108237–242.CrossRefGoogle Scholar
  4. [Fre87]
    Frenklach, M., and Harris, S. J. (1987) Aerosol Dynamics Modeling Using the Method of Moments. J. Colloid Interface Sci.118252–261.CrossRefGoogle Scholar
  5. [Fre02]
    Frenklach, M. (2002) Method of Moments with Interpolative Closure. Chem. Eng. Sci.572229–2239.CrossRefGoogle Scholar
  6. [Fuc64]
    Fuchs, N. A.(1964) The Mechanics of AerosolsPergamon Press, Elmsford, NY.Google Scholar
  7. [Gel80]
    Gelbrand, F., Tambour, Y., and Seinfeld, J. H. (1980) Sectional Representations for Simulating Aerosol Dynamics. J. Colloid Interface Sci.76541–556.CrossRefGoogle Scholar
  8. [Hou88]
    Hounslow, M. J., Ryall, R. L., and Marshall, V. R. (1988) A Discretized Population Balance for Nucleation, Growth and Aggregation. AIChE J.341821–1832.CrossRefGoogle Scholar
  9. [Jeo01]
    Jeong, J. I., and Choi, M. (2001) A Sectional Model for the Analysis of Growth of Non-Spherical Particles undergoing Coagulation and Coalescence. J. Aerosol Sci.32565–582.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [Kam03]
    Kammler, H. K., Jossen, R., Morrison, P. W., Pratsinis, S. E., and Beaucage, G. (2003) The Effect of External Electric Fields during Flame Synthesis of Titania. Powder Technol., in press.Google Scholar
  11. [Kob91]
    Kobata, A., Kusakabe, K., and Morooka, S. (1991) Growth and Transformation of TiO2 Crystallites in Aerosol Reactor. AIChE J.37347–359.CrossRefGoogle Scholar
  12. [Koc90]
    Koch, W., and Friedlander, S. K. (1990) The Effect of Particle Coalescence on the Surface Area of a Coagulating Aerosol. J. Colloid Interface Sci.140419–427.CrossRefGoogle Scholar
  13. [Kru93]
    Kruis, F. E., Kusters, K. A., and Pratsinis, S. E. (1993) A Simple Model for the Evolution of the Characteristics of Aggregate Particles Undergoing Coagulation and Sintering. J. Aerosol Sci. Tech.19514–526.CrossRefGoogle Scholar
  14. [Kum96a]
    Kumar, S., and Ramkrishna, D. (1996a) On the Solution of Population Balance Equations by Discretization-I. A Fixed Pivot Technique. Chemical Eng. Sci.511311–1332.CrossRefGoogle Scholar
  15. [Kum96b]
    Kumar, S., and Ramkrishna, D. (1996b) On the Solution of Population Balance Equations by Discretization-II. A Moving Pivot Technique. Chemical Eng. Sci.511333–1342.CrossRefGoogle Scholar
  16. [Kum97]
    Kumar, S., and Ramkrishna, D. (1997) On the Solution of Population Balance Equations by Discretization-II. Nucleation, Growth and Aggregation of Particles. Chemical Eng. Sci.524659–4679.CrossRefGoogle Scholar
  17. [Lan90]
    Landgrebe, J., and Pratsinis, S. E. (1990) A Discrete-Sectional Model for Particulate Production by Gas-Phase Chemical Reaction and Aerosol Coagulation in the Free-Molecular Regime,” J. Colloid Interface Sci.13963–86.CrossRefGoogle Scholar
  18. [Nak01]
    Nakaso, K., Fujimoto, T., Seto, T., Shimada, M., Okuyama K., and Lunden, M. (2001) Size Distribution Change of Titania Nano-Particle Agglomerates Generated by Gas Phase Reaction, Agglomeration, and Sintering. Aerosol Sci. Technol.35929–947.CrossRefGoogle Scholar
  19. [McG97]
    McGraw, R. (1997) Description of Aerosol Dynamics by the Quadrature Method of Moments. Aerosol Sci. Technol.27255–265.CrossRefGoogle Scholar
  20. [Pan95]
    Panda, S., and Pratsinis, S. E. (1995) Modeling the Synthesis of Aluminum Particles by Evaporation-Condensation in an Aerosol Flow Reactor. Nanostructured Mater.5755–767.CrossRefGoogle Scholar
  21. [Rog97]
    Rogak, S. N. (1997) Modeling Small Cluster Deposition on the Primary Particles of Aerosol Agglomerates. Aerosol Sci. Technol.26127–140.CrossRefGoogle Scholar
  22. [Sei86]
    Seinfeld, J. H. (1986) Atmospheric Chemistry and Physics of Air PollutionJohn Wiley & Sons, New York.Google Scholar
  23. [Spi02]
    Spicer, P. T., Chaoul, O., Tsantilis, S., and Pratsinis, S. E. (2002) Titania Formation by TiCl4 Gas Phase Oxidation, Surface Growth and Coagulation. J. Aerosol Sci.3317–34.CrossRefGoogle Scholar
  24. [Tsa99]
    Tsantilis, S., Pratsinis, S. E., and Haas, V. (1999) Simulation of Synthesis of Pd Nanoparticles in a Jet Aerosol Flow Condenser. J. Aerosol Sci.53785–803.CrossRefGoogle Scholar
  25. [Tsa00]
    Tsantilis, S., and Pratsinis, S. E. (2000) Evolution of Primary and Aggregate Particle-Size Distributions by Coagulation and Sintering. AIChE J.46407–415.CrossRefGoogle Scholar
  26. [Tsa01]
    Tsantilis, S., Briesen, H., and Pratsinis, S. E. (2001) Sintering Time for Silica Particle Growth. Aerosol Sci. Technol.34237–246.Google Scholar
  27. [Tsa02]
    Tsantilis, S., Kammler, H. K., and Pratsinis, S. E. (2002) Population Balance Modeling of Synthesis of Titania Nanoparticles. Chem. Eng. Sci.572139–2156.CrossRefGoogle Scholar
  28. [Vem94]
    Vemury, S., Kusters, K. A., and Pratsinis, S. E. (1994) Modeling of Coagulation and Sintering of Particles. Proceedings of the First International Particle Technology Forum2350–355.Google Scholar
  29. [Whi81]
    Whitby, K. T. (1981) Determination of Aerosol Growth Rates in the Atmosphere Using Lumped Mode Aerosol Dynamics. J. Aerosol Sci.12173–178.CrossRefGoogle Scholar
  30. [Xio91]
    Xiong, Y., and Pratsinis, S. E. (1991) Gas Phase Production of Particles in Reactive Turbulent Flows. J. Aerosol Sci.22637–655.CrossRefGoogle Scholar
  31. [Xio3]
    Xiong, Y., and Pratsinis, S. E. (1993) Formation of Agglomerate Particles by Coagulation and Sintering-Part I. A Two Dimensional Solution of the Population Balance Equation. J. Aerosol Sci.24283–300.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stavros Tsantilis
    • 1
  1. 1.Particle Technology Laboratory, Department of Mechanical and Process Engineering (D-MAVT)ETH ZrichSwitzerland

Personalised recommendations