Advertisement

Dissipative Particle Dynamics for Modeling Complex Fluidics

  • Justyna Czerwinska
  • Nikolaus A. Adams
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 39)

Abstract

In this paper we present a new formulation of a Dissipative Particle Dynamics (DPD) model which is computationally less expensive than Voronoi-based DPD while preserving most of the advantages of Voronoi DPD over simple spherical-particle models. Aiming at fully three-dimensional flows an alternative to the straight-forward application of Voronoi DPD is desirable. The new model presented here can be derived from the Molecular Dynamics level by a coarse graining procedure (bottom-up approach) as well as from the continuum or macro-scale level conservation equations (top-down approach). In this paper the bottom-up derivation is presented.

Keywords

Dissipative Particle Dynamics Coarse Graining Procedure Sweepline Algorithm Close Point Problem Method Partition Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BAM97]
    Bonet Avalos J., Mackie A. D.: Dissipative particle Dynamics with Energy Conservation. Europhys. Lett.40141–146 (1997)CrossRefGoogle Scholar
  2. [CA03]
    Czerwinska J., Adams N. A.: Numerical modeling of micro-channel flows by a DPD method, In: ASME FED’03, (2003)Google Scholar
  3. [ER03]
    Español, P., Revenga M.: Smoothed dissipative particle dynamics. Phys. Rev. E67026705–1–12 (2003)CrossRefGoogle Scholar
  4. [EW95]
    Español P., Warren, P. B.: Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191-196 (1995)Google Scholar
  5. [FCF00]
    Flekkøy E.G., Coveney P.V., de Fabritiis G.: Foundations of dissipative particle dynamics. Phys. Rev. E622140–2157 (2000)CrossRefGoogle Scholar
  6. [For86]
    Fortune S.: A Sweepline algorithm for Voronoi Diagrams. In: 2nd Annu. ACM Symp. on Comp. Geom.313–322 (1986)Google Scholar
  7. [HK92]
    Hoogerbrugge P. J., Koelman J. M. V. A.: Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhys. Lett.19155–160 (1992)CrossRefGoogle Scholar
  8. [OBS92]
    Okabe A., Boots B., Sugihara K.: Spatial Tessellation: Concepts and Applications of Voronoi Diagrams.John Wileyand Sons, Chichester, UK (1992)Google Scholar
  9. [SE01]
    Serrano M., Español P.: Thermodynamically consistent mesoscopic fluid particle model. Phys. Rev. E641–18 (2001)CrossRefGoogle Scholar
  10. [SH75]
    Shamos M. I., Hoey D.: Closest point problem. In: 16th Annu. IEEE Symp. Found. Comp. Sci.151–162 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Justyna Czerwinska
    • 1
  • Nikolaus A. Adams
    • 1
  1. 1.Institute of Fluid MechanicsTechnical University DresdenDresdenGermany

Personalised recommendations