Continuum-particle hybrid methods for dense fluids

  • Thomas Werder
  • Jens H. Walther
  • Joonas Asikainen
  • Petros Koumoutsakos
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 39)


We outline a hybrid multiscale algorithm for the simulation of dense fluids by coupling molecular dynamics and continuum fluid dynamics, here described by the incompressible Navier-Stokes equations. We estimate the required sampling of the atomistic system to achieve sufficiently accurate boundary condition for the continuum system. This analysis indicate that momentum flux (pressure) tensor requires an intractable number of samples (O(108)), hence penalizing flux based coupling algorithms. For the present systems we therefore employ a density based, alternating Schwarz algorithm to couple the two system. The boundary conditions at the interface between the two regions is imposed by inserting or deleting atoms in a buffer region using the USHER algorithm. Preliminary results indicate, that the forcing of the continuum may be achieved using appropriate source terms in the momentum equations.


Fractional Error Continuum Fluid Dynamic Bulk Water System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BPvG+84]_H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem. Phys.81(8):3684–36841984.CrossRefGoogle Scholar
  2. [CT80]
    G. Ciccotti and A. Tenenbaum. Canonical ensemble and nonequilibrium states by molecular dynamics. J. Stat. Phys.23(6):767–7721980.CrossRefGoogle Scholar
  3. [DBC03a]
    R. Delgado-Buscalioni and P. V. Coveney. Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady flow. Phys. Rev.E 67:046704-1-046704-13, 2003.Google Scholar
  4. [DBC03b]
    R. Delgado-Buscalioni and P. V. Coveney. USHER: An algorithm for particle insertion in dense fluids. J. Chem. Phys.119(2):978–9872003.CrossRefGoogle Scholar
  5. [FWF00]
    E. G. Flekkøy, G. Wagner, and J. Feder. Hybrid model for combined particle and continuum dynamics. Europhys. Lett.52(3):271–2762000.CrossRefGoogle Scholar
  6. [GBCA99]
    Alejandro L. Garcia, John B. Bell, William Y. Crutchfield, and Berni J. Alder. Adaptive mesh and algorithm refinement using direct simulation Monte Carlo. J. Comput. Phys.154:134–1551999.zbMATHCrossRefGoogle Scholar
  7. [GM03]
    M. C. Gordillo and J. Martí. Water on the outside of carbon nanotube bundles. Phys. Rev., B 67:205425–1–205425–42003.Google Scholar
  8. [Had99]
    N. G. Hadjiconstantinou. Hybrid atomistic-continuum formulations and the moving contact-line problem. J. Comput. Phys.154:245–2651999.zbMATHCrossRefGoogle Scholar
  9. [HGBH03]
    Nicolas G. Hadjiconstantinou, Alejandro L. Garcia, Martin Z. Bazant, and Gang He. Statistical error in particle simluations of hydrodynamic phenomena. J. Comput. Phys.187:274–2972003.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [HP97]
    Nicolas G. Hadjiconstantinou and Anthony T. Patera. Heterogeneous atomistic-continuum representations for dense fluid systems. Int. J. Mod. Phy. C8(4):967–9761997.CrossRefGoogle Scholar
  11. [KZWW03]
    P. Koumoutsakos, U. Zimmerli, T. Werder, and J. H. Walther. Nanoscale fluid mechanics. ASME/SPIE handbook of Nanotechnology, page in press, 2003.Google Scholar
  12. [LL59]
    L. D. Landau and E. M. Lifshitz. Fluid Mechanics, volume 6. Pergamon Press, Oxford1959.Google Scholar
  13. [OT95]
    Sean T. O’Connell and Peter A. Thompson. Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flow. Phys. Rev. E52(6):R5792–R57951995.CrossRefGoogle Scholar
  14. [sta99]
    STAR-CD version 3.1a. manual, 1999.Google Scholar
  15. [TTKB98]
    Riina Tehver, Flavio Toigo, Joel Koplik, and Jayanth R. Banavar. Thermal walls in computer simulations. Phys. Rev.E 57(1):R17–R201998.Google Scholar
  16. [WJHK01]
    J. H. Walther, R. Jaffe, T. Halicioglu, and P. Koumoutsakos. Carbon nanotubes in water: Structural characteristics and energetics. J. Phys. Chem. B105:9980–99872001.CrossRefGoogle Scholar
  17. [WWJ+03]_T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos. On the water-graphite interaction for use in MD simulations of graphite and carbon nanotubes. J. Phys. Chem. B107:1345–13522003.CrossRefGoogle Scholar
  18. [WWJK03]
    J. H. Walther, T. Werder, R. L. Jaffe, and P. Koumoutsakos. Hydrodynamic properties of carbon nanotubes. Phys. Rev. E, page accepted, 2003.Google Scholar
  19. [ZGA02]
    Yihao Zheng, Alejandro L. Garcia, and Berni J. Alder. Comparison of kinetic theory and hydrodynamics for Poiseuille flow. J. Stat. Phys.109(3/4):495–5052002.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Thomas Werder
    • 1
  • Jens H. Walther
    • 1
  • Joonas Asikainen
    • 1
  • Petros Koumoutsakos
    • 1
  1. 1.Institute of Computational ScienceETH ZürichZürichSwitzerland

Personalised recommendations